Вода, ее физические и химические свойства, гигиеническое и экологическое значение»

План лекции:

1. Физиологическое, эпидемиологическое и санитарно-гигиеническое значение воды.

2. Органолептические свойства воды. Химический состав. Заболевания, обусловленные необычным минеральным составом природных вод. Влияние загрязнения воды на здоровье человека. Инфекционные заболевания и гельминтозы, передаваемые водным путем. Условия и сроки выживания патогенных микроорганизмов в воде. Особенности водных эпидемий.

3. Виды источников водоснабжения и их санитарно – гигиеническая характеристика. Причины загрязнения. Охрана источников водоснабжения. Гигиеническая характеристика систем хозяйственно – питьевого водоснабжения.

4. Гигиенические требования и нормативы качества питьевой воды.

5. Гигиенические требования к нецентрализованному (местному) водоснабжению.

6. Методы улучшения качества питьевой воды.

Вода является одним из объектов окружающей среды, она необходима для жизни человека, растений и животных. Без пищи человек может прожить более месяца, а без воды — лишь несколько дней.

Физиологическое значение воды определяется тем, что она входит в состав всех биологических тканей организма человека и составляет примерно 60... 70 % массы тела. В костях содержится 22 % воды, в жировой ткани — 30, в печени — 70, в мышце сердца — 79, в почках — 83, в стекловидном теле — 99 %. Вода — универсальный растворитель. Она является основой кислотно-щелочного равновесия, участвует во всех химических реакциях в организме, составляет основу крови, секретов и экскретов организма.

Важной функцией воды является транспорт в организм многих макро- и микроэлементов и других питательных веществ. Одновременно вода участвует в выведении шлаков и токсичных веществ с потом, слюной, мочой и калом. Велика роль воды и в терморегуляции организма. При испарении пота человек теряет около 30 % тепловой энергии.

Вода имеет важнейшее гигиеническое значение, и ее качество рассматривается как ведущий показатель санитарного благополучия населения. Доброкачественная вода необходима для поддержания чистоты тела и закаливания, уборки жилища, приготовления пищи и мытья посуды, стирки белья, поливки улиц и зеленых насаждений.

При среднем расходе воды для питьевых и хозяйственно-бытовых нужд без учета промышленного потребления, равном 272 л на одного жителя России в сутки, в Москве этот показатель составляет 539 л, в Челябинской области — 369, Саратовской — 367, Новосибирской — 364, Магаданской — 359 и в Камчатской области — 353 л. В то же время население ряда городов и районов республик Калмыкии, Мордовии, Марий-Эл, а также Оренбургской, Астраханской, Ярославской, Волгоградской, Курганской, Кемеровской областей испытывает постоянный дефицит питьевой воды.

Значение воды состоит и в том, что она является ценным технологическим сырьем. Для получения 1 т резины или алюминия требуется 1500 м3 воды. Столько же требуется для выращивания 1 т пшеницы, а для выращивания 1 т риса — 4000 м3. При выплавке 1 т стали расходуется около 150 м3 воды, на производство 1 т мяса — 20000 м3.

Оздоровительное значение воды состоит в использовании ее для купания, закаливания, занятий спортом. Хороший эффект дают физиотерапевтические водные процедуры и питье минеральных вод. Велико также эстетическое значение воды и ее роль в воздействии на эмоциональное состояние человека.

В населенных местах могут, применятся различные системы обеспечения водой. При централизованном водоснабжении по водопроводу вода подается всему населенному пункту или части его. В ряде населенных мест, чаще всего сельского типа, водоснабжение осуществляется путем непосредственного забора воды из источника (колодец, родник). Такое водоснабжение называется местным или децентрализованным.

Эпидемиологическое значение воды связано с тем, что вода является фактором передачи многих заболеваний. Водный путь передачи характерен для многих инфекционных заболеваний: холеры, брюшного тифа, паратифов, амебной и бактериальной дизентерии, амебиаза, энтеровирусных заболеваний, инфекционного гепатита А, лептоспироза, туляремии, лямблиоза, балантидиаза, гельминтозов, некоторых энтеро-, рота- и аденовирусных заболеваний и др.

Ежегодно в Российской Федерации регистрируется более 100 вспышек дизентерии, брюшного тифа и вирусного гепатита А. В последние годы количество инфекционных заболеваний, связанных с воздействием загрязненной воды, снизилось. Однако в регионах, где микробное загрязнение воды поверхностных водоисточников особенно велико, заболеваемость населения дизентерией и острыми кишечными инфекциями значительно выше, чем в среднем по стране.

Хотя роль воды в распространении инфекционных заболеваний известна давно, первое достоверное описание водной эпидемии было сделано лишь во время эпидемии холеры в Лондоне в 1854 г. Холера относится к особо опасным инфекциям, это кишечное заболевание водного пути передачи инфекции. За два века было зарегистрировано шесть пандемий классической холеры.

Последняя пандемия (1902-1926 гг.) захватила Азию, Африку и Европу. Умерло более 10 млн чел. Во время каждой из шести пандемий холера распространялась и на территорию России. Крупные вспышки холеры были зарегистрированы в Санкт-Петербурге в 1908-1909 гг. и в 1918 г.

В настоящее время в России налажена четкая система регистрации всех случаев холеры. За последние 12 лет было зарегистрировано две вспышки холеры, связанные с водой, с числом пострадавших от 8 до 30 чел. в Ставропольском крае (1990 г.) и в Республике Дагестан (1998 г.). Неблагополучное состояние по холере в ряде стран мира постоянно создает угрозу ввоза этой инфекции в Российскую Федерацию.

Высокая заболеваемость и смертность характерны также для брюшного тифа и паратифов А и В. Самая крупная эпидемия брюшного тифа была в Барселоне в 1914 г., когда одновременно заболели 18 500 чел., 1847 из них умерло. В последние годы в нашей стране брюшным тифом ежегодно заболевают 320-330 чел., наблюдается достаточно стабильная частота этой инфекции. Так, в 1996 г. с водным фактором была связана заболеваемость брюшным тифом около 200 чел. в Дагестане.

Определенное значение имеет водный путь передачи для развития дизентерии, хотя он и менее важен, чем пищевой или контактно-бытовой. Дизентерия — острое инфекционное заболевание, проявляется поражением толстой кишки и общей интоксикацией организма.

В России ежегодно более 150 тыс. чел. болеют дизентерией. Дизентерия, вызванная шигеллами Зонне, преобладает в странах Европы и Северной Америки. Дизентерия, вызванная шигеллами Флекснера, преобладает в странах Африки, Азии и Южной Америки. Заболеваемость бактериальной дизентерией водного происхождения в Российской Федерации с 1995 по 2000 г. снизилась почти в 2 раза. Наибольшая заболеваемость отмечается в северных регионах, Удмуртии, Северной Осетии.

Водный путь имеет важное значение в передаче антропозоонозных заболеваний, таких как лептоспирозы. Очаги заболевания лептоспирозами часто располагаются у непроточных или малопроточных водоемов. Носителями являются грызуны, крупный рогатый скот и свиньи. Водный фактор имеет определенное значение также в распространении туляремии, сибирской язвы, бруцеллеза и других антропозоонозных заболеваний бактериальной природы.

Водным путем могут передаваться не только бактериальные инфекции, но и вирусные заболевания (инфекционный гепатит А, полиомиелит, аденовирусные инфекции, энтеровирусные заболевания). Самая крупная эпидемия инфекционного гепатита была зарегистрирована в Дели (Индия) в 1955-1956 гг., тогда переболели около 29 тыс. чел. Причиной эпидемии явилось загрязнение водопроводной воды сточными водами, содержащими вирусы гепатита А.

Ежегодно в нашей стране регистрируется от 50 до 180 тыс. новых случаев этого заболевания. Максимальное число водных вспышек гепатита А регистрируется в населенных пунктах, имеющих нецентрализованные системы водоснабжения, когда вода не подвергается очистке и обеззараживанию. Наиболее высокая заболеваемость отмечается в Еврейской автономной области, Республике Тува, Сахалинской, Ленинградской и других областях. Рост заболеваемости гепатитом А в 2000 г. на 89,8 % по сравнению с 1999 г. расценивается эпидемиологами как начало нового эпидемического подъема в России.

Водные эпидемии характеризуются быстрым подъемом заболеваемости, связью заболеваний с использованием воды определенного водоисточника и быстрым спадом заболеваемости. Поэтому для предупреждения возможного возникновения заболеваний необходимо бесперебойное снабжение населения достаточным количеством доброкачественной воды.

Минеральный состав природных вод может способствовать развитию неинфекционных заболеваний. Употребление воды с несоответствующим нормативам солевым составом может быть причиной развития флюороза, нитратной метгемоглобинемии, нарушений водно-солевого обмена, диспепсических расстройств и т.д.

Косвенное влияние состава и свойств природных вод проявляется в ограничении употребления воды, имеющей неблагоприятные органолептические свойства (запах, вкус, цветность, мутность). Органолептические свойства воды имеют важное гигиеническое значение, поскольку они оказывают влияние на санитарные условия жизни и здоровье населения.

Вода, обладающая неприятным запахом и вкусом, вызывает нарушения водно-солевого режима, секреторной деятельности желудка, а также ограничение или отказ населения от использования такой воды в питьевых целях.

Доброкачественная вода не имеет запаха. Запахи могут быть естественного (землистый, болотистый, рыбный, цветочный и др.) и искусственного происхождения (запахи, связанные с загрязнением водоема сточными водами, хлорированием воды и др.). Некоторые запахи вызваны органическим загрязнением воды и дают повод считать ее подозрительной в эпидемиологическом отношении.

Питьевая вода должна иметь приятный освежающий вкус без посторонних привкусов. Различают четыре основных вкуса — сладкий, кислый, горький, соленый. Привкус воды зависит от повышенных концентраций минеральных солей. Соли железа придают воде чернильный привкус, соли тяжелых металлов — вяжущий привкус, хлориды — соленый, сульфаты и фосфаты — горький привкус.

В зависимости от минерального состава вода может приобретать определенный цвет. Болотные воды имеют желтоватый оттенок из-за присутствия гуминовых веществ. Примесь глины придаёт воде молочный оттенок, примесь солей железа — зеленоватый. Прозрачность воды зависит от наличия механических взвешенных веществ и химических соединений. Мутная вода внешне неприятна и подозрительна в эпидемиологическом отношении.

Природные воды делятся на пресные (минерализация не превышает 1 г/л), минерализованные (1...50 г/л) и рассолы (более 50 г/л). Вода с большим содержанием солей имеет неприятный вкус. Поэтому содержание их в питьевой воде ограничивается по пределу вкусового ощущения.

Вода с повышенной минерализацией отрицательно влияет на секрецию желудка, вызывает отеки, нарушает водно-солевой обмен, хуже утоляет жажду. Высокое содержание хлоридов в воде приводит к снижению водопотребления, заболеваниям органов пищеварительной системы, уменьшению диуреза, повышению артериального давления.

Высокое содержание сульфатов в воде приводит к снижению водопотребления, диспепсическим явлениям, подавлению желудочной секреции, нарушению процесса всасывания из кишечника, диарее.

Суммарное содержание бикарбонатов, сульфатов и хлоридов кальция и магния определяет жесткость воды. Вода с общей жесткостью более 7 мг/л имеет неблагоприятные гигиенические свойства. Жесткая вода малопригодна для стирки и мытья, требует большого расхода мыла. Мясо, овощи и бобовые плохо развариваются в жесткой воде.

Употребление жесткой воды приводит к нарушению водно-солевого баланса, развитию мочекаменной болезни — отложению камней в почках и мочевом пузыре. Высокоминерализованную воду с повышенным уровнем жесткости получает население Ростовской и Тюменской областей, Республики Татарстан и др.

В воде источников нецентрализованного водоснабжения часто обнаруживаются нитраты и нитриты. Избыточные количества нитратов в питьевой воде вызывают у детей раннего возраста, находящихся на искусственном вскармливании, водно-нитратную метгемоглобинемию.

Клинические симптомы метгемоглобинемии обусловлены кислородным голоданием вследствие присоединения нитритов к гемоглобину и образованию метгемоглобина. Заболевание развивается при концентрациях нитратов выше 45 мг/л.

Обычные концентрации нитратов и нитритов не представляют опасности для здоровья взрослого населения и детей старшего возраста. У детей раннего возраста (36 мес) ферментная система еще полностью не сформировалась, а микроорганизмы, присутствующие в желудочно-кишечном тракте грудных детей, способствуют переходу нитратов в нитриты, что и приводит к развитию нитратной метгемоглобинемии.

Кроме того, нитраты обладают также мутагенным и эмбрио-токсическим эффектами и могут преобразовываться в канцерогенные соединения — нитрозамины — непосредственно в организме человека.

Нитрозамины оказывают как политропное, так и выраженное органотропное действие, но у большинства из них отмечается гепатотоксичность и гепатоканцерогенность, некоторые обладают и мутагенными свойствами. Также нитраты вызывают снижение резистентности организма к действию других канцерогенных и мутагенных факторов.

В воде могут обнаруживаться повышенные концентрации металлов. Вода с повышенным содержанием железа имеет неприятный «железистый» привкус и запах, желтоватый цвет. Она не подходит для стирки, так как на белье остаются желтые пятна. Присутствие в питьевой воде железа природного происхождения (часто вместе с марганцем) наиболее характерно для подземных вод, широко используемых в южной и центральной частях России, а также в Сибирском регионе.

Кроме того, повышенные концентрации железа имеют место при использовании стальных и чугунных водопроводных труб в результате их коррозии. В частности, от этого страдает население Санкт-Петербурга и др. населенных мест.

В природных водах помимо макроэлементов присутствуют и микроэлементы: фтор, йод, молибден, бериллий, селен, стронций и др. Избыточное или недостаточное поступление микроэлементов в организм человека вызывает физиологические сдвиги или патологические изменения, развиваются биогеохимические эндемические заболевания.

В России более 90 % населения не получает в необходимом количестве фтор. Особенно характерен недостаток этого элемента для поверхностных источников питьевого водоснабжения на территориях Архангельской, Ленинградской областей, Краснодарского края, Республики Коми и Кабардино-Балкарской Республики. В Кабардино-Балкарской Республике дефицит фтора в воде является фактором повышенной заболеваемости кариесом зубов у 60 % населения.

При избытке фтора в подземных питьевых водах проявляется другое заболевание — флюороз. Это заболевание в столице Республики Мордовия г. Саранске наблюдается у 72 % детей школьного возраста. Повышенное содержание фтора в питьевой воде характерно также для территорий Рязанской и Вологодской областей.

Для водоснабжения населенных мест используются: подземные и поверхностные водоисточники.

Подземные водоисточники.

Подземная вода скапливается в порах суглинков и песков, в трещинах известковых пород. Ниже таких пластов обычно залегают водонепроницаемые породы, например плотные глины. Подземные воды делятся на почвенные, грунтовые и межпластовые.

Почвенные воды, или верховодка, образуются за счет просачивания в грунт атмосферных осадков, они лежат у самой поверхности земли. Они не могут служить источником водоснабжения, т.как сильно загрязнены.

Грунтовые воды располагаются в первом от поверхности водоносом горизонте, под которым лежит водонепроницаемый слой. Грунтовые воды образуются за счет фильтрации атмосферных осадков и используются для водоснабжения, чаще всего в сельской местности. Эти воды недостаточно надежны в санитарном отношении, поэтому нуждаются в обеззараживании.

Межпластовые воды находятся в водоносном горизонте, залегающем между двумя водонепроницаемыми пластами. Нижний называется ложем, а верхний – кровлей. Питание межпластового водоносного горизонта происходит лишь в местах выхода его на поверхность.

При наклонном положении межпластовые горизонты становятся напорными. Такие межпластовые напорные воды называются артезианскими. Глубина межпластовых вод от нескольких десятков до нескольких сотен метров, имеют стабильный минеральный состав, бесцветны, используются для водоснабжения без очистки и обеззараживания.

В пониженных частях рельефа водоносные горизонты иногда выходят на поверхность земли и здесь образуются естественные выходы подземных вод - родники (нисходящие или восходящие).

Открытые водоемы.

Все открытые водоемы загрязняются при стекании атмосферных осадков, талых вод, при спуске сточных вод. Органолептические свойства и химический состав воды открытых водоемов зависят от многих условий. Поверхностные воды обычно мало минерализованы, качество воды не постоянно и зависит от сезона года и погоды.

В основном качество воды постоянно за счет процессов самоочищения:

1. Разбавление стоков.

2. Осаждения взвешенных частиц.

3. Минерализации органических веществ, за счет микроорганизмов и растворенного кислорода.

Однако сильное загрязнение может привести к развитию гнилостных процессов, в результате содержания растворенного кислорода снижается и происходит активное размножение анаэробных микроорганизмов. В этом случае водоем становится непригодным не только для водоснабжения, но и оздоровительных и хозяйственных целей.

Санитарные правила предлагают выбирать источники водоснабжения в следующем порядке:

1. Межпластовые напорные (артезианские) воды.

2. Межпластовые безнапорные артезианские воды.

3. Грунтовые воды.

4. Открытые водоемы.

Существует два вида водоснабжения: децентрализованное и централизованное. За санитарный надзор за децентрализованным водоснабжением отвечают ЦГСЭН при участии медицинского персонала сельских врачебных участков и ФАП. Для лаб. контроля воду отбираю для бактериологического и химического анализа.

Ежегодно весной обязательно следует проводить очистку шахтного колодца от загрязнений, удаляют верхний слой ила и насыпают слой крупного песка или щебня. Стенки обрабатывают 5% раствором хлорной извести.

Закончив очистку колодца и дезинфекцию сруба, выжидают. Когда колодец заполнится водой, после чего проводят дезинфекцию колодца объемным способом. Для чего в воду добавляют по 1 ведру 2% раствора хлорной извести на 1 м3 воды, перемешивают и оставляют на 6-10 часов.

Затем определяют наличие остаточного хлора по запаху. При отсутствии запаха добавляют 1/3-1/4 первоначального количества хлорной извести и выжидают еще 3-4 часа. Хлорирование проводится также после ремонта, ухудшения качества воды, при появлении инфекционных заболеваний. Для постоянного хлорирования вода в штатных колодцах используют дозирующие патроны.

Вокруг источников централизованного водоснабжения организуется зона санитарной охраны, которая состоит из 3 основных поясов:

Первый пояс – зона строгого режима, это территория, на которой находится насосная станция, водоочистительные сооружения, резервуар чистой воды, территория ограждается и охраняется.

На водопроводе с подземным источником радиус зоны от 30-50 м.

На водопроводе с поверхностным водоисточником радиус зоны вверх по течению не менее 200 м, вниз не менее 100 м.

Второй пояс – зона ограничения в этой зоне запрещается спуск неочищенных сточных вод, земляные работы.

На водопроводе с подземным водоисточником радиус зоны 250-500 м.

На водопровод с поверхностным водоисточником размеры зоны санитарной охраны определяются местными санитарными и гидрологическими условиями.

Здесь запрещается использование территории или источников водоснабжения, которое может вызвать качественное и количественное ухудшения качества воды.

Третий пояс – зона наблюдения. Включает контроль за бассейном реки.

Употребление недоброкачественной питьевой воды может быть причиной: инфекционных и паразитарных заболеваний, связанных с загрязнением водоисточников хозяйственно-фекальными сточными водами или нечистотами из выгребов.

Заболеваний неинфекционной природы, связанных с загрязнением воды химическими веществами, попавшими туда в результате промышленного, сельскохозяйственного, бытового и иного загрязнения, добавляемыми в виде реагентов или образующимися в качестве побочных продуктов в процессе обработки воды на водопроводных станциях.

В Российской Федерации действуют Санитарно-эпидемиологические правила и нормативы — СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», которые учитывают современное санитарно-эпидемическое состояние окружающей среды и обеспечивают высокие требования к качеству питьевой воды и контролю за ним.

Питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства.

Качество питьевой воды должно соответствовать гигиеническим нормативам перед ее поступлением в распределительную сеть, а также в точках водоразбора наружной и внутренней водопроводной сети.

Органолептические свойства воды должны соответствовать следующим нормативам:

1. Запах и вкус питьевой воды обусловлены наличием в воде органических соединений растительного происхождения, сообщающих воде землистый, травянистый, болотистый запах и привкус. Причиной запаха и привкуса питьевой воды может быть и загрязнение промышленными сточными водами. При исследовании воды кроме характера запаха и привкуса определяют и интенсивность в баллах (от 0 до 5 баллов). По СанПин запах и привкус должен быть не более 2 баллов.

2. Цветность воды, обусловлена наличием вымываемых из почвы гуминовых веществ, размножением водорослей в водоеме (цветения), а также загрязнением сточными водами. При исследовании цветности воды пробу сравнивают с стандартной шкалой цветности, и результат выражают в градусах цветности. По СанПин цветность должна быть не более 200.

3. Мутность воды, обусловлена наличием в ней взвешенных частиц. По СанПин мутность воды должна быть не более 1,5 мг/л.

Безопасность питьевой воды в эпидемическом отношении определяется ее соответствием нормативам по микробиологическим и паразитологическим показателям:

1. Термотолерантные колиформные бактерии – отсутствие в 100 мл.

2. Общие калиформные бактерии – отсутствие в 100 мл.

3. Общее микробное число – не более 50 в 1 мл.

Безвредность питьевой воды по химическому составу определяется рядом нормативных параметров, к которым относятся:

1. Сухой остаток остающийся после выпаривания 1 л воды, не должен превышать 1000 мг/л.

2. Железо, при контакте воды с воздухом железо окисляется, образуя гидроксид железа – придающий воде мутность и бурую окраску, не должно превышать 0,3 мг/л.

3. Жесткость общая, обуславливается наличием солей кальция и магния. С увеличением жесткости воды ухудшается разваривание мяса, увеличивается расход мыла, усиливается образование накипи, у человека может вызвать обезвоживание и снижение аппетита, не должна превышать 7 ммоль/л.

4. Хлориды – воды с высоким содержанием хлоридов имеют солоноватый привкус и неблагоприятно влияют на желудочную секрецию, не должно превышать 350 мг/л.

5. Сульфаты – придают воде горько-соленый привкус, неблагоприятно влияют на желудочную секрецию, не должно превышать 500 мг/л.

6. Фтористые соединения не должно превышать для климатических районов:

I и II – не более 1,5 мг/л.

III – не более 1,2 мг/л.

7. Алюминий – не должно превышать 0,5 мг/л.

8. Нитраты – не должно превышать 45 мг/л.

9. Остаточно свободный хлор – не должно превышать 0.3-0,5 мг/л.

Радиационная безопасность питьевой воды определяется соответствием нормативам показателей общей α- и β-активности. Общая α-радиоактивность не должна превышать ОД Бк/л, а общая β-радиоактивность — 1,0 Бк/л.

Вода источников нецентрализованного водоснабжения употребляется населением без предварительной очистки. Она должна быть безопасной по эпидемическим показателям, безвредной по химическому составу, иметь благоприятные органолептические свойства.

Место для устройства колодца должно располагаться на возвышенном участке, удаленном не менее чем на 50 м от уборных, выгребных ям, сети канализации, скотных дворов, мест захоронения людей и животных, складов удобрений и ядохимикатов, выше (по потоку грунтовых вод) от существующих и возможных источников загрязнения.

Для устройства колодцев и каптажей, как правило, должны использоваться водоносные горизонты, защищенные с поверхности водонепроницаемыми породами.

Существуют определенные требования к устройству и оборудованию шахтного колодца. Стенки шахты колодца облицовывают водонепроницаемыми креплениями. У края шахты устраивают глиняный замок глубиной 2 м и шириной 1 м. Поверх глины оборудуют отмостку из асфальта, бетона, кирпича или камня с уклоном от колодца.

Колодец должен быть обеспечен навесом, крышкой и общественным ведром. Верх колодца должен быть не менее чем на 0,8 м выше поверхности земли. Все это важно для предотвращения попадания в колодец грунтовых, ливневых, талых вод и других загрязнений.

Для предупреждения возникновения в воде мути на дне колодца должен быть фильтрующий слой из гравия толщиной 20... 30 см. Не разрешается поднимать воду из колодца личными ведрами, а только общественным ведром. В радиусе 20 м от колодца не допускаются полоскание и стирка белья, водопой животных. Территория вокруг каптажей и колодцев должна содержаться в чистоте и быть ограждена.

Для подъема воды используют так же и трубчатые колодцы, которые состоят из труб, фильтра и насоса. Из глубоких водоносных горизонтов воду добывают посредством буровых скважин, оборудованных трубами и насосом.

Показателем поступления в воду органических загрязнений может служить увеличение по сравнению с результатами предыдущих исследований содержания хлоридов, аммиака, нитритов, нитратов, а также окисляемости.

Аммиак является начальным продуктом разложения органических азотсодержащих (в том числе белковых) веществ и может расцениваться как показатель опасного в эпидемическом отношении свежего загрязнения воды органическими веществами животного происхождения.

Соли азотистой кислоты (нитриты) представляют собой продукты окисления аммиака под влиянием микроорганизмов в процессе нитрификации и указывают на давность загрязнения.

Соли азотной кислоты (нитраты) — конечные продукты минерализации органических азотсодержащих веществ. Присутствие в воде нитратов без аммиака и солей азотистой кислоты указывает на завершение процесса минерализации.

Одновременное содержание в воде аммиака, нитритов и нитратов свидетельствует о незавершенности этого процесса и продолжающемся загрязнении воды. Хлориды в воде водоисточников рассматриваются как показатели бытового загрязнения.

Содержание хлоридов в воде поверхностных незагрязненных водоисточников обычно не превышает 20...30 мг/л. Увеличение содержания хлоридов по сравнению с их обычным для данного водоисточника содержанием говорит об опасном загрязнении воды продуктами жизнедеятельности человека (фекалиями, мочой).

Представление о содержании органических веществ в воде дает показатель окисляемости (количество миллиграммов кислорода, израсходованного на химическое окисление органических веществ, содержащихся в 1 л воды).

Увеличение коли-индекса (количество кишечных палочек в 1 л воды) свыше предельно допустимого с одновременным изменением химического состава и органолептических свойств воды указывает на необходимость проведения чистки и профилактической дезинфекции колодца.

Контроль за состоянием воды в источниках нецентрализованного водоснабжения осуществляется центрами Госсанэпиднадзора.

При санитарном надзоре за источниками нецентрализованного водоснабжения используются нормативы, установленные СанПиН 2.1.4.1175-02 « Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» по следующим показателям: запах — не более 2-3 баллов; привкус — не более 2-3 баллов; цветность — не более 30°; прозрачность — не менее 30 см; нитраты — не более 45 мг/л; коли-индекс — не более 10. Содержание химических веществ не должно превышать ПДК.

Водные эпидемии характеризуются быстрым подъемом заболеваемости, связью заболеваний с использованием воды определенного водоисточника и быстрым спадом заболеваемости. Поэтому для предупреждения возможного возникновения заболеваний необходимо бесперебойное снабжение населения достаточным количеством доброкачественной воды.

Методы обработки воды, с помощью которых качество воды источников водоснабжения доводится до соответствия требованиям СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», зависят от качества исходной воды водоисточников и подразделяются на основные и специальные.

Основными способами являются осветление, обесцвечивание, обеззараживание.

Для выполнения этих задач используют следующие методы:

1. Коагуляция.

2. Отстаивание.

3. Фильтрация.

4. Обеззараживание воды.

Процесс коагуляции способствует осаждению коллоидных взвесей, для чего добавляют коагулянты – соли аммония (сульфат алюминия) и соли железа, которые превращаются в гидроокиси, на поверхности хлопьев собираются частицы примесей воды, отдельные хлопья при контакте укрупняются, а затем выпадают в осадок. Эффективность коагуляции воды зависит от химического состава воды, ее температуры, количества и характера взвеси. Для этого подбирают оптимальную дозу коагулянта.

Воду с коагулянтом (после камеры реакции) подают в отстойники, которые представляют собой резервуары, через которые непрерывно с небольшой скоростью протекает вода (2-8 часов). Отстойники бывают горизонтальные и вертикальные.

В отстойниках хлопья осаждаются, а вода осветляется и обесцвечивается.

После коагуляции и отстаивания от взвешенных частиц пропускают через быстродействующие фильтры. Это резервуары, на дне которых устроен дренаж. Поверх дренажа загружают слой щебня и слой песка толщиной 1 м. Через фильтр со скоростью 5-12 м3/час пропускают отстоянную воду. Каждые 8-12 ч фильтр отмывают обратным током воды.

Методы обеззараживания воды подразделяются на химические (хлорирование, озонирование, использование серебра) и физические (кипячение, ультрафиолетовое облучение, облучение у-лучами и др.).

В настоящее время основным методом, используемым для обеззараживания воды на водопроводных станциях является метод хлорирования. Однако все большее распространение получает метод озонирования, в комбинации с хлорированием он дает хорошие результаты по улучшению качества воды.

Наиболее часто для хлорирования воды на водопроводах используют газообразный хлор, однако применяют и другие хлорсодержащие реагенты. В порядке возрастания окислительно-восстановительного потенциала они располагаются следующим образом: хлорамины (RNHC12 и RNH2C1), гипохлориты кальция Са(ОС1)2 и натрия NaOCl, хлорная известь (комплекс Са(С1О)2, СаС12, Са(ОН)2 и молекул воды), газообразный хлор, диоксид хлора С1О2.

Бактерицидный эффект хлорирования объясняется воздействием на протоплазму бактерий хлорноватистой кислоты, которая образуется при введении хлора в воду:

Бактерицидными свойствами обладают также хлоранионы и хлорид-ионы, которые образуются при разложении хлорноватистой кислоты.

Степень диссоциации НОС1 возрастает при повышении активной реакции воды, таким образом, с повышением рН бактерицидный эффект хлорирования снижается.

Действующим началом при хлорировании хлорамином и гипохлоритами является хлорат-ион, а диоксидом хлора — НС1О (хлористая кислота), которая имеет наиболее высокий окислительно-восстановительный потенциал, в силу чего при использовании диоксида хлора достигается наиболее полное окисление и обеззараживание.

При введении хлорсодержащего реагента в воду основное его количество (более 95 %) расходуется на окисление органических и легкоокисляющихся неорганических (соли двухвалентного железа и марганца) веществ, содержащихся в воде; на окисление бактериальных клеток расходуется всего 2...3 % общего количества хлора.

Количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 мин, называется хлорпоглощаемостъю воды. Присутствие в воде, подаваемой в водопроводную сеть, остаточного активного хлора в концентрации 0,3...0,5 мг/л является гарантией эффективности обеззараживания. Кроме того, наличие активного остаточного хлора необходимо для предотвращения вторичного загрязнения воды в разводящей сети.

Следовательно, наличие остаточного хлора является косвенным показателем безопасности воды в эпидемическом отношении.Общее количество хлора, необходимое для удовлетворения хлорпоглощаемости воды и обеспечения наличия необходимого количества (0,3...0,5 мг/л свободного активного хлора при нормальном хлорировании и 0,8...1,2 мг/л связанного активного хлора при хлорировании с аммонизацией) остаточного хлора называется хлорпотребностъю воды.

В практике водоподготовки используется несколько способов хлорирования воды: хлорирование нормальными дозами (по хлорпотребности), хлорирование с преаммонизацией и гиперхлорирование (доза хлора заведомо превышает хлорпотребность).

При хлорировании нормальными дозами доза хлора устанавливается экспериментально по сумме хлорпоглощаемости и санитарной нормы остаточного хлора (хлорпотребности воды) путем проведения пробного хлорирования. Этот метод наиболее часто применяется на водопроводных станциях. Минимальное время контакта воды с хлором при хлорировании нормальными дозами составляет летом не менее 30 мин, зимой —1ч.

При хлорировании с преаммонизацией в воду помимо хлора вводится аммиак, в результате чего происходит образование хлораминов.

Этот метод употребляется для улучшения процесса хлорирования, во-первых, при необходимости транспортировки воды по трубопроводам на большие расстояния, так как остаточный связанный (хлораминный) хлор обеспечивает более длительный бактерицидный эффект, чем свободный; во-вторых, при содержании в исходной воде фенолов, которые при взаимодействии со свободным хлором образуют хлорфенольные соединения, придающие воде резкий аптечный запах.

Хлорирование с преаммонизацией приводит к образованию хлораминов, которые из-за более низкого окислительно-восстановительного потенциала в реакцию с фенолами не вступают, поэтому посторонние запахи не возникают. Однако в силу более слабого действия хлораминов остаточное количество его в воде должно быть выше, чем свободного, и составлять не менее 0,8...1,2 мг/л.

Гиперхлорирование воды — хлорирование дозами, заведомо превышающими хлорпотребность воды. Гиперхлорирование используется при неблагоприятной эпидемиологической обстановке, при отсутствии или неэффективной работе водоочистных сооружений, в полевых условиях, при отсутствии возможности проведения пробного хлорирования для определения хлорпотребности.

В тех случаях, когда применения только основных способов недостаточно, используют специальные методы очистки (обезжелезивание, обесфторивание, обессоливание и др.), а также введение некоторых необходимых для организма человека веществ — фторирование, минерализация обессоленных и маломинерализованных вод.

Для удаления химических веществ наиболее эффективным является метод сорбционной очистки с использованием активированного угля, такая очистка значительно улучшает и органолептические свойства воды.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: