Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

XXII. п.6. Проверка статистических гипотез




Статистической гипотезой называется любое предположение о виде или о параметрах неизвестного распределения генеральной совокупности.

Не располагая сведениями обо всей генеральной совокупности, высказанную гипотезу сопоставляют по определенным правилам с выборочными данными и делают вывод о том, можно принять гипотезу или нет. Эта процедура сопоставления называется проверкой гипотезы.

Рассмотрим этапы проверки гипотезы и используемые при этом понятия.

1. Располагая выборочными данными и руководствуясь конкретными условиями рассматриваемой задачи, формулируют гипотезу , которую называют основной или нулевой, и гипотезу , конкурирующую с гипотезой . Гипотезу называют также альтернативной, она является логическим отрицанием гипотезы . Выбор тех или иных нулевых или альтернативных гипотез определяется решаемыми исследователем прикладными задачами.

2. Задается вероятность , которую называют уровнем значимости.

Уровень значимости определяет вероятность так называемой ошибки первого рода, которая совершается при отвержении гипотезы , т.е. принимается конкурирующая гипотеза , тогда как на самом деле гипотеза верна. Вероятность задается заранее малым числом: 0,1; 0,05, 0,001 и т.д.

3. Выбирается статистический критерий проверки гипотезы – . Статический критерий – это случайная величина, закон распределения которой при условии справедливости проверяемой гипотезы известен.

После выбора критерия множество всех его возможных значений разбивают на два непересекающихся подмножества: одно из них содержит значения критерия, при котором нулевая гипотеза отвергается – критическая область , а другое содержит те значения критерия, при которых гипотеза принимается – область принятия гипотезы. Критическими точками называются точки, отделяющие критическую область от области принятия гипотезы.

Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области. Правосторонней (левосторонней)называют критическую область, определяемую неравенством ( ). Двусторонней называют критическую область, определяемую неравенствами .

4. По результатам эксперимента находят эмпирическое (наблюдаемое) значение статистического критерия . Если наблюдаемое значение критерия принадлежит критической области, то нулевую гипотезу отвергают в пользу конкурирующей гипотезы; если наблюдаемое значение критерия принадлежит области принятия гипотезы, то нулевую гипотезу принимают.

5. Результат проверки гипотезы формулируется следующим образом: гипотеза проверена по критерию на уровне значимости и принята (не противоречит имеющимся экспериментальным данным) или отвергнута.




Пример.

Проверка гипотезы о равенстве средних двух нормально распределенных совокупностей с неизвестными, но равными дисперсиями по малым выборкам ( )

Пусть имеются две нормально распределенные генеральные совокупности и , характеризуемые генеральными средними и . Для проверки гипотезы из этих совокупностей берутся две независимые выборки объемов и , по которым находят выборочные средние , и исправленные выборочные дисперсии , .

1. Нулевая гипотеза : .

Альтернативная гипотеза : а) ( );

б) .

2. Уровень значимости .

3. Статистический критерий: (22)

Критерий имеет распределение Стьюдента с степенями свободы.

а) При альтернативной гипотезе ( ) критическая область является односторонней и определяется неравенством . Критическая точка определяется по таблице значений распределения Стьюдента, где , .

б) При альтернативной гипотезе критическая область является двусторонней и определяется неравенством . Критическая точка определяется по таблице значений распределения Стьюдента, где , .

4. По формуле (22) определяем эмпирическое значение -критерия.

Гипотеза принимается, если: а) ;

б) .

5. Делается вывод о результатах проверки гипотезы .

Задача 7. Массовую долю (%) оксида меди в минерале определили методом иодометрии и методом комплексометрии. По первому методу получили результаты: 38,20; 38,00; 37,66, а по второму: 37,70; 37,65; 37,55. Проверить, различаются ли средние результаты данных методов на уровне значимости , если известно, что результаты измерений имеют нормальный закон распределения с неизвестными, но равными дисперсиями.



Решение.

Вычисляем для каждого метода числовые характеристики, учитывая, что объем каждой выборки равен :

· выборочные средние значения по формуле (14):

=37,63;

· исправленные выборочные дисперсии по формуле (18):

,

=0,07453;

=0,00583.

Теперь проверим гипотезу о равенстве средних двух совокупностей.

1. Нулевая гипотеза: : .

Альтернативная гипотеза: :

2. Уровень значимости .

3. Проверку гипотезы будем проводить с помощью -критерия, так как выборки маленькие и по условию дисперсии генеральных совокупностей неизвестны, но равны. По таблице значений распределения Стьюдента при и числе степеней свободы находим критическое значение: .

4. Рассчитаем эмпирическое значение -критерия, используя формулу (22):

.

Сравним полученное значение с табличным значением . Так как , то гипотеза принимается.

5. Гипотеза о равенстве средних значений двух методов проверена на уровне значимости с помощью -критерия и принята. Следовательно, результаты обоих методов отражают истинное содержание в минерале.

Ответ: гипотеза о равенстве средних проверена на уровне значимости с помощью -критерия и принята.





Дата добавления: 2015-02-04; просмотров: 860; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете??? 8524 - | 7387 - или читать все...

Читайте также:

 

3.81.29.254 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.004 сек.