Применения

Экономичная связанная подача тепла в систему отопления осуществляется в настоящее время в закрытых системам теплоснабжения по двухступенчатой «последовательной» схеме абонентского ввода, разработанной ВТИ, МЭИ и теплосетью Мосэнерго, (рис. 2.9). Наименование «последовательная» схема получила потому, что- в данном случае подогреватели горячего водоснабжения I (1) и II (2) ступени соединены по сетевой воде последовательно с теплообменником отопления 3. При последовательной схеме, так же как и при смешанной, происходит утилизация тепла обратной воды теплообменника отопления для подогрева водопроводной воды, и рециркуляционная вода систем горячего водоснабжения соединяется с водопроводной водой между подогревателями.

Применяемая на практике автоматика последовательной схемы (автоматика теплосети Мосэнерго) состоит из двух элементов: регулятора температуры воды, поступающей в систему горячего водоснабжения, РТ и автомата постоянства расхода воды РР1. Последний, хотя и установлен на обводном трубопроводе подогревателя II ступени, однако получает импульс от датчика 5, контролирующего общий расход сетевой воды через ввод. При отсутствии водоразбора в системе горячего водоснабжения автомат РТ закрыт и вся сетевая вода проходит по обводному трубопроводу подогревателя 2. При таком режиме ввода температура сетевой воды, поступающей в теплообменник отопления, имеет наиболее высокое значение и отапливаемые помещения получают избыточное количество тепла. С началом:; водоразбора автомат РТ приоткрывается и в первый момент времени общий расход воды через подогреватель и его обводную линию становится больше, чем при закрытом автомате РТ. Но с увеличением общего расхода сетевой воды перепад давления в импульсной шайбе 5 увеличивается и автомат РР1 на обводном трубопроводе прикрывается. При максимальном водоразборе автомат РТ полностью открыт, а автомат PP1 полностью закрыт. Теоретически совместная работа автоматов РТ и PP1 должна обеспечивать постоянство расхода сетевой воды через ввод. Практически данная автоматика не обеспечивает строгого лимитирования расхода сетевой воды через ввод. Превышение заданного лимита расхода сетевой воды через ввод может происходить в часы максимального водоразбора, если из-за эксплуатационного загрязнения или отложения накипи в подогревателях горячего водоснабжения уменьшились их коэффициенты теплопередачи, а также если по тем или иным причинам (например, в отдельные предпраздничные дни) водоразбор превысит расчетное максимальное значение. В указанных случаях автомат PP1 будет полностью закрыт, а автомат РТ будет пропускать расход сетевой воды больше предусмотренного.

Рис. 2.9. Последовательная схема абонентского ввода

1,2 — подогревателя горячего водоснабжения; 3 — теплообменник отопления; 4 — регулятор расхода; 5 — датчик расхода; 6 — перемычка; РТ — регулятор температуры

По сравнению со смешанной схемой «с ограничением» последовательная схема с перемычкой (рис. 2.10) имеет меньшую поверхность нагрева подогревателей горячего водоснабжения и является более гибкой, позволяющей изменять общий расход сетевой воды через ввод при сохранении нормального отопительного расхода сетевой воды через теплообменник отопления. Регулятор расхода воды PP1 на перемычке теплообменника II ступени настраивается на отопительный расход сетевой воды. При отсутствии водоразбора регулятор температуры РТ закрыт, и через ввод проходит только отопительный расход воды, который полностью поступает в теплообменник отопления — регулятор на перемычке РР2 закрыт. При малом водоразборе суммарный расход сетевой воды через подогреватель II ступени и его обводной трубопровод остается равным отопительному расходу, и регулятор РР2 остается в закрытом положении. Когда же водоразбор увеличится настолько, что отопительного расхода сетевой воды окажется недостаточно для подогрева водопроводной воды до нужной температуры в подогревателе II. ступени (регулятор PP1 при этом будет закрыт полностью), регулятор температуры РТ будет пропускать через ввод расход сетевой воды, превышающий отопительный расход. В этом режиме ввода регулятор РР2 открыт и пропускает часть сетевой воды в обратный трубопровод, сохраняя через теплообменник отопления нормальный отопительный расход сетевой воды.

Рис. 2.10. Последовательная схема ввода с регулируемой перемычкой

1, 2 — подогреватели горячего водоснаб-жения; 3 — теплообменник отопления; 4 — регулятор общего расхода сетевой воды; 5 — датчик регулятора общего расхода сетевой воды; 6 — регулятор расхода сетевой воды через теплообменник отопления; 7 — датчик регулятора расхода сетевой воды через теплообменник отопления; 8 — перемычка

Общие принципы устройства ЦТП абонентских вводов. Элеваторы: работа, устройство, расчет. Достоинства и недостатки элеваторных тепловых пунктов. Новые технические решения по разработке автоматизированных энергоэффективных ЦТП.(смотри ответ № 9)

Основные принципы работы элеватора. Схема элеваторного смесителя, графики давлений и скоростей в его проточной части показаны на рис. 3.1. Работает элеватор следующим образом. Высокотемпературная вода выходит из сопла 2 со скоростью Wi в виде струи, несущей большой запас кинетической энергии. Скорость создается. в результате срабатывания в пределах сопла избыточного давления (по отношению к давлению в начале камеры смешения), равного сумме располагаемого перепада давления в тепловой сети перед элеватором и перепада давления во всасывающем коллекторе . Активная рабочая струя захватывает пассивные массы окружающей воды, передаёт им часть своей энергии и образовавшийся смешанный поток движется в проточной части струйного аппарата. В камере смешения в результате обмена импульсами происходит выравнивание поля скоростей потока и за счет высвобождающейся кинетической энергии растет его статическое давление. В конце камеры смешения статическое давление увеличивается на . После камеры смешения поток поступает в диффузор, где тормозится и его статическое давление увеличивается на .

В рассматриваемой конструкции элеватора при движении воды через всасывающий коллектор 1 (см. рис. 3.1) давление падает, а скорость растет. В связи с этим при входе в камеру смешения подсасываемый поток имеет скорость Wz, соизмеримую со скоростью струи, вытекающей из сопла, w1. Следовательно, активная струя эжектирует массы из потока, движущегося с большой скоростью. Такие элеваторы относятся к струйным аппаратам с большой скоростью эжекции. Если всасывающий коллектор сделать широким, чтобы скорость w2=0, тогда получим элеватор с малой скоростью эжекции, характеризуемый меньшим КПД.

Рис. 3.1. Схема элеватора (а), график давлений (б) и график скоростей (а)

1 — всасывающий коллектор; 2 — сопло; 3 — камера смешения; 4 — диффузор; 5 — горловина камеры смешения; 6 — приемная камера; G1, G2, G3, — массовые расходы: высокотемпературной воды из подающей линии, подмешиваемой воды нз обратной линии, смешанной воды в системе отопления; рпэ, роэ, рсэ — давления: в подающем и обратном трубопроводах перед элеватором, в системе отопления после элеватора; w1, w2, w3, w4— скорости: при истечении из сопла, при входе в камеру смешения, при входе в диффузор невыходе из него; - перепады давления: располагаемый перед элеватором, во всасывающем коллекторе, в камере смешения, в диффузоре, создаваемый элеватором; F1, F2, F3, F4—сечения; на выходе нз сопла, при входе в камеру смешения для подсасываемого потока (кольцевой зазор), горловины камеры смешения, на выходе из диффузора; lк, lд — длины: камеры смешения и диффузора

При движении потоков в струйном аппарате происходят потери энергии. Основными потерями являются потери на удар при смешении потоков. Для снижения этих потерь необходимо уменьшить разность между скоростями активного w1 и пассивного w2 потоков, что и достигается в аппаратах с большой скоростью эжекции. Несмотря на дополнительные потери энергии, связанные с созданием скорости подсасываемой воды и дополнительным торможением потока (восстановлением давления), эффективность работы элеватора повышается.

Большое значение имеет профиль всасывающего коллектора, так как при плохом профиле потери в коллекторе могут оказаться больше выигрыша в потерях на удар.

Давление во всасывающем коллекторе снижается, поэтому при торможении потока сначала необходимо восстановить давление, затраченное на создание скорости подсасываемой воды во всасывающем коллекторе, а потом создать избыточное. Восстановление давления связано с дополнительными потерями, которые для повышения эффективности струйного аппарата должны быть максимально уменьшены путем соответствующей профилировки его проточной части и сокращения потерь на трение. При неоптимальном профиле проточной части и значительных потерях энергий на трение элеватор с большой скоростью эжекции не даст выигрыша в КПД.

Смесительные насосы. Смешение высокотемпературной воды с обратной водой системы отопления можно осуществлять не только в элеваторах, но и с помощью смесительных насосов. Смесительные насосные узлы устраивают вместо элеваторов, как правило, при недостаточных располагаемых перепадах давлений в точках присоединения абонентов к наружной тепловой сети. В ряде случаев с помощью насосов одновременно со смешением повышается давление в подающем трубопроводе после теплового пункта для залива системы отопления высокого здания или, наоборот, понижается давление в обратном трубопроводе до теплового пункта при высоком давлении в наружной тепловой сети.

Насосная схема присоединения системы отопления позволяет более точно, чем элеваторная, поддерживать необходимую температуру воздуха в отапливаемых помещениях, так как в этом -случае возможно более совершенное регулирование подачи тепла на отопление путем изменения коэффициента подмешивания.

Смесительный насос можно устанавливать на перемычке между подающей и обратной магистралями, на подающем трубопроводе местной системы отопления, на обратном трубопроводе местной системы отопления. Подача насоса, установленного на подающем или обратном трубопроводе местной системы отопления, равна расходу воды в системе отопления.

Смесительные насосы подбирают по заводским характеристикам. Насос должен обеспечивать заданные подачу и напор при наибольшем значении КПД.

В качестве смесительных насосов используют как радиальные (центробежные) насосы общепромышленного назначения (типа К, КМ, ЦНШ), так и радиальные насосы специальной конструкции, учитывающей особенности работы насоса в системе отопления.

Радиальные насосы типа К, КМ, ЦНШ, наиболее часто используемые на тепловых пунктах, по напору и подаче обычно не подходят для системы отопления. В этом случае необходимо искусственно увеличивать сопротивление системы отопления путем установки диафрагмы или вставки малого диаметра, что приводит к увеличению мощности электродвигателя и перерасходу электроэнергии. Кроме того, корпус специальных циркуляционных насосов рассчитан на гидростатическое давление от 0,6 до 1 МПа, тогда как для насосов типа К и КМ максимально допустимое давление на входе 0,2 МПа, что ограничивает их применение в системах, отопления зданий повышенной этажности.

.Для циркуляции воды в системах отопления и горячего водоснабжения устанавливают по два одинаковых насоса, действующих попеременно: один работает, другой находится в резерве. Насосы оборудуют автоматикой включения резерва.

15. Принципиальная схема, назначение, функциональные задачи, достоинства и недостатки ЦТП. Технические требования к устройству, оборудованию и средствам автоматизации ЦТП. (смотри ответ № 9)

Для поддержания заданных значений параметров теплоносителя, поступающего в системы отопления, горячего водоснабжения и к технологическому оборудованию промышленных предприятий, для обеспечения нормального режима работы оборудования тепловых пунктов и систем, использующих теплоноситель, для уменьшения численности обслуживающего персонала тепловые пункты оснащаются автоматическими регуляторами.

По виду энергии, перемещающей регулирующий орган, регуляторы делятся на регуляторы, работающие без постороннего источника энергии (регуляторы прямого действия), и регуляторы, работающие с использованием постороннего источника энергии (гидравлические, пневматические, электрические), т. е. регуляторы непрямого действия.

Регуляторы прямого действия просты в конструктивном отношении и надежны в эксплуатации, что объясняет их широкое применение для поддержания постоянного давления или перепада давлений воды на тепловых пунктах небольшой и средней мощности. Однако регуляторы прямого действия имеют меньшую чувствительность, чем.регуляторы непрямого действия, и могут быть установлены на трубопроводах dy<=100 мм.,

Регуляторы непрямого действия рекомендуется применять при автоматизации объектов со сложными динамическими характеристиками, так как они обеспечивают более широкий диапазон регулирования, возможность введения обратнрй связи и осуществление многоимпульсного регулирования.

Наиболее распространенными регуляторами прямого действия являются регуляторы давления и перепада давления.(расхода) сильфонно-пружинные РД и РР, грузовой регулятор давления и универсальный регулятор перепада давления (расхода) и давления УРРД

Теплообменное оборудование тепловых пунктов систем теплоснабжения: виды теплообменников, конструкции, принцип действия, техническая характеристика, методика теплового расчета, достоинства и недостатки

В тепловых пунктах устанавливают водоподогреватели различных типов, и конструкций. В зависимости от вида греющей среды их делят на пароводяные и водоводяные. В первом случае греющей средой является водяной пар, во втором — высокотемпературная вода.. Нагреваемой средой в обоих случаях является вода.

По конструктивным признакам водоподогреватели подразделяют на. кожухотрубные и пластинчатые. В кожухотрубных водоподогревателях основными конструктивными элементами являются цилиндрический корпус и пучок гладких трубок, размещаемый внутри корпуса. Один из теплоносителей протекает внутри трубок, другой — в межтрубном пространстве корпуса. Как внутри трубок, так и в межтрубном пространстве теплоносители движутся с определенными скоростями, обеспечивая активный теплообмен. Такие водоподогреватели получили название скоростных.

Скоростные водоводяные подогреватели, у которых греющая и нагреваемая вода движется навстречу, называют противоточными. Они эффективнее прямоточных, так как обеспечивают большую среднюю разность температур и позволяют нагревать воду до более высокой температуры. Для пароводяных скоростных подогревателей направление движения теплоносителей не имеет значения. Водоводяные и пароводяные скоростные подогреватели предназначены для систем отопления и горячего водоснабжения.

По ориентации оси корпуса скоростные пароводяные водоподогреватели могут быть горизонтальными и вертикальными. В тепловых пунктах жилых, общественных и промышленных зданий устанавливают горизонтальные водоподогреватели.

Иногда в тепловых пунктах устанавливают трубчатые теплообменники, в которых пучок трубок погружен в емкость, заполненную нагреваемой водой. Такие водоподогреватели, в отличие от скоростных, называют емкостными и используют в системах горячего водоснабжения с периодическим разбором воды.

Основным конструктивным элементом пластинчатых водоподогре-вателей является гофрированная пластина. Пластины располагают параллельно друг другу, между поверхностями двух смежных пластин создаются небольшие зазоры щелевидной формы, по которым движутся потоки греющей и нагреваемой сред.

Водоводяные скоростные подогреватели выпускают в настоящее время разъемными. Разъемное исполнение секций позволяет собирать на месте подогреватели с различным числом однотипных секций.

На рис. 3.2 изображен секционный скоростной водоводяной подогреватель. Основным элементом подогревателя является корпус из стальной бесшовной трубы. Внутри.корпуса расположены трубка из латуни диаметром 16 x 1 мм, ввальцованные двумя концами в глухие фланцы. Латунь имеет высокую теплопроводность — около 135 Вт/(м°С) [90 ккал/(мч°С)], следовательно, термическое сопротивление стенки латунной трубки, имеющей толщину 1 мм, ничтожно.

Корпусы теплообменников длинрй 2 и 4 м имеют наружные диаметры от 57 до 530 мм, число - трубок от 4 до 450. Подогреватели рассчитаны на рабочее давление 1 МПа (10 кгс/см2). В подогревателях, предназначенных для горячего водоснабжения, греющую воду направляют в межтрубное пространство, нагреваемую — в трубки. Этим достигается, во-первых, выравнивание скоростей движения сетевой и водопроводной воды, так как расход сетевой воды обычно больше, чем водопроводной. Во-вторых, осаждающуюся накипь легче удалить с внутренней поверхности трубок, чем с наружной. При таком порядке движения воды стальной корпус имеет более высокую температуру, чем латунные трубки, следовательно, нет необходимости в установке линзового компенсатора на корпусе подогревателя. В подогревателях, предназначенных для систем отопления, для выравнивания скоростей греющая вода направляется по трубкам, нагреваемая вода — по межтрубному пространству. На корпуса этих подогревателей устанавливаются линзовые компенсаторы. В комплект поставки подогревателя входят кроме корпуса входной и выходной патрубки, а также калачи для соединения трубного пучка. Патрубок для выхода нагретой воды имеет штуцер для установки термореле.

Рис. 3.2. Водоводяной скоростной секционный подогреватель по ГОСТ 34-588-68

На рис. 3.3 показан пароводяной двухходовой подогреватель с отбортованными днищами. Подогреватель состоит из стального корпуса, внутри которого расположен трубный пучок. Один конец трубного пучка ввальцован в трубную доску, неподвижно закрепленную относительно корпуса. Другой конец трубного пучка ввальцован в подвижную трубную доску, которая несет плавающую относительно корпуса подогревателя водяную камеру. На корпусе подогревателя установлены патрубки для входа пара, выхода конденсата, входа и выхода нагреваемой воды. Для установки термометров и манометров предусмотрены гильза и штуцер. Контроль за уровнем конденсата осуществляется с помощью водомерного стекла. При установке подогревателя на конструкции, сваренной из сортовой стали, необходимо предусмотреть крепление подогревателя двумя хомутами. Один хомут затягивают намертво, другой — с прокладкой из асбеста для возможности перемещения, вызванного температурным удлинением.

Рис. 3.3. Пароводяной скоростной двухходовой водоподогреватель по ГОСТ 34-576-68

1 — вход пара; 2 — выход конденсата; 3 — выход воды; 4 — вход воды

В настоящее время промышленность выпускает пароводяные подогреватели. двух- и четырехходовые с длиной трубок 2 и 3 м. Площадь поверхности нагрева таких подогревателей изменяется от 6,3 до 234 м2, теплопроизводительность — от 0,67 до 32 МВт (0,58—27,5 Гкал/ч). Трубная система подогревателей выполнена из латунных трубок диаметром –16х1 мм. Из условия прочности предельное давление воды 1,6 МПа, пара - 1 МПа. Давление пара в подогревателе должно быть на 0,1—0,2 МПа меньше давления воды во избежание попадания пара в трубки подогревателя при их повреждении и вскипания воды.

Пар из парового коллектора поступает в межтрубное пространство подогревателя и конденсируется на поверхности трубок, имеющих более низкую температуру. Конденсат под действием силы тяжести стекает вниз.

В системах горячего водоснабжения с периодическим разбором воды (например, душевые установки промышленных предприятий) устанавливают емкостные пароводяные горизонтальные водоподогреватели. Подогреватель состоит из стального корпуса и змеевика, расположенного внутри корпуса. Пар подается в змеевик, холодная вода поступает в нижнюю часть корпуса подогревателя и вытесняет нагретую воду через патрубок, расположенный в верхней части корпуса. При этом не происходит перемешивания холодной и нагретой воды, так как холодная вода, имеющая большую плотность, остается внизу, а по мере нагревания она поднимается вверх. Теплопроводность в массе воды затруднена. Рабочая емкость водоподогревателя определяется объемом воды, находящейся выше змеевика. Выпускаемые промышленностью емкостные водоподогреватели имеют вместимость от 400 до 4000 л и площадь поверхности нагрева от 0,5 до 4,7 м2. Площадь поверхности змеевика обеспечивает нагрев рабочего объема воды от 5 до 75°С в течение 1 ч при рабочем давлении пара в змеевике 0,485 МПа. Наличие значительного объема воды в подогревателе позволяет использовать его как бак-аккумулятор. Отсутствие естественной и вынужденной конвекции в массе воды затрудняет теплообмен между паром и водой. Коэффициент теплопередачи в емкостных пароводяных подогревателях значительно ниже, чем в скоростных.

В скоростных и емкостных пароводяных подогревателях происходит процесс конденсации водяного пара. Тепло, выделяющееся при конденсации, идет на нагрев воды. Использование тепла будет неполным, если из подогревателя выйдет пар, не успевший сконденсироваться. Во избежание потерь тепла на выходе из пароводяных подогревателей устанавливают конденсатоотводчики, используемые также для дренажа паропроводов и паровых коллекторов. По принципу действия конденсатоотводчики делятся на термостатические, термодинамические и поплавковые. Принцип действия термостатических конденсатоотврдчиков следующий. Сильфон (термостат) термостатического конденсатоотводчика частично заполнен легкоиспаряющейся жидкостью. При попадании в конденсат насыщенного пара, температура которого выше температуры испарения жидкости, жидкость в сильфоне мгновенно вскипает и давление в нем становится выше давления пара. Сильфон удлиняется и с помощью прикрепленного к нему золотника закрывает проход, предотвращая утечку пара. При попадании в конденсатоотводчик конденсата, температура которого на 10—20° С ниже температуры насыщенного пара вследствие некоторых потерь тепла в окружающую среду, давление паров жидкости в сильфоне снижается, сильфон сжимается, открывается проход и конденсат отводится, в дренаж или в сборный бак.

Пластинчатые водоподогреватели. Основным элементом пластинчатого подогревателя. является пластина. На рис. 3.5, а показана пластина типа 0,5 Е с гофрами «в елку» (конструкция УКРНИИхиммаша). Габаритные размеры пластины 1370 х 500 х 1 мм (длина х ширину х толщину), площадь поверхности теплообмена одной пластины 0,5 м3; масса пластины 5,4 кг. Пластины штампуются из листового металла, гофры пластин имеют в сечении профиль равнобедренного треугольника с основанием 14 мм и высотой 4 мм.

Поверхность нагрева образуется из параллельно расположенных гофрированных пластин. По зазорам между пластинами направляются потоки греющей и нагреваемой, сред. Простейший подогреватель должен иметь не менее трех пластин, образующих два канала (зазора), по одному из которых течет греющая среда, по другому — нагреваемая.

Пластины устанавливаются на раму подогревателя, которая состоит из верхней и нижней несущих штанг, подвижной и неподвижной плит с зажимным устройством..Неподвижная плита обычно прикреплена к полу, подвижная подвешена на скобе к верхней штанге и может перемещаться по ней. На плитах имеются штуцера для присоединения.трубопроводов.

Разборная конструкция подогревателей позволяет достаточно легко и быстро производить чистку поверхностей пластин от слоя накипи, отлагающейся на них в процессе эксплуатации.

Группа пластин, образующая систему каналов, в которых рабочая среда движется только в одном направлении, составляет пакет. Один или несколько пакетов, сжатых между неподвижной и подвижной плитами, называют секцией. (рис. 3.5, б).

Рис. 3.5. Пластинчатый водоподогреватель

а — пластика с грфрами в «елку»; 1— отверстие для входа и выхода воды; 2 — резиновая прокладка; б — подогреватель в сборе: 1 — штанга; 2 — передняя и задняя стойки; 3 — штуцера; 4 — пластины; в — симметричная схема компоновки пластин; г — несимметричная схема компоновки пластин

Пластины можно компоновать в симметричные пакеты для греющей и нагреваемой сред, т.е. с одинаковым числом каналов в каждом пакете для каждой среды (рис. 3.5, в). Если расход одной среды значительно отличается от расхода другой среды, то для получения оптимальных скоростей по ходу каждой среды применяют несимметричные схемы компоновок пластин. В этом случае число каналов в пакетах для греющей и нагреваемой сред неодинаково (рис.3.5, г).

Схему простейшего водоподогревателя, состоящего из пяти пластин, образующих по два параллельных канала для каждого потока, условно обозначают дробью Сх 2/2.

Пластинчатые подогреватели разборной конструкции предназначены для работы при давлении до 1,6 МПа и температуре рабочей среды до 180°С.

Пластинчатые подогреватели имеют более высокие технико-экономические показатели по сравнению с кожухотрубными. Процесс изготовления поверхности теплообмена из тонких штампованных пластин более индустриален и менее трудоемок, чем производство бесшовных труб малого диаметра для той же цели. Малая толщина и параллельная установка пластин с малыми промежутками между ними позволяют разместить в минимальном пространстве максимальную поверхность теплообмена, что недостижимо в других типах поверхностных теплообменников. В пластинчатых подогревателях использованы сложные формы поверхностей теплообмена и образуемых ими каналов, в которых поток воды искусственно турбулизируется. Это значительно повышает эффективность теплообмена, в то же время гидравлические потери в каналах и, следовательно, затраты энергии на перекачку воды остаются небольшими.

В Советском Союзе пластинчатые подогреватели впервые были изготовлены в 1940 г. для нужд пищевой промышленности. В последние годы они начали находить применение в системах теплоснабжения для нагрева воды паром или высокотемпературной водой.

Задачей теплового расчета является определение необходимой площади поверхности нагрева водоподогревателя при заданной тепловой производительности, конструкции и известных температурах греющей и нагреваемой сред на входе в водоподогрёватель и на выходе из него.

Площадь поверхности нагрева,м2, определяют по формуле

где Q — тепловая производительность, Вт; К — коэффициент теплопередачи, Вт/(м2°С); — средняя разность температур греющего и нагреваемого теплоносителя, 0С.

Изменение температур теплоносителей при их движении вдоль поверхности нагрева происходит нелинейно. Учитывая это, среднюю разность температур следует определять по логарифмической формуле:

Где —большая разность температур греющей и нагреваемой жидкостей; — меньшая разность температур.

Коэффициент теплопередачи водоподогревателей определяется по выражению:

(3.19)

где — коэффициент теплоотдачи от греющего теплоносителя к стенке трубки; — то же, от стенки трубки к нагреваемой воде; — толщина стенки трубки, м; — теплопроводность материала стенки.

В процессе эксплуатации подогревателя происходит отложение накипи н.а трубках. Особенно интенсивно откладывается накипь на внутренней поверхности трубок подогревателей, нагревающих воду для системы горячего водоснабжения. Водопроводная вода, проходящая по трубкам, не подвергается, как правило, химической очистке от солей жесткости. В процессе нагрева водопроводной воды соли. жесткости выпадают в осадок, образуя слой накипи. При этом значение коэффициента теплопередачи снижается по сравнению с расчетным.

Особенности теплового расчета пластинчатых водоподогревателей. Наличие в щелевидных каналах пластинчатых подогревателей, образованных пластинами с гофрами, большого числа близко расположенных поворотов приводит к эффективной искусственной турбулизации потоков воды. На значение критического числа Рейнольдса влияют форма поверхности теплообмена, форма канала, а также источники искусственной турбулизации потоков.

При движении воды в круглой трубе в условиях стабилизированного потока область переходного режима лежит в пределах 2300< <Re<10000. В извилистых каналах пластинчатых водоподогревателей переход к турбулентному режиму происходит при Re=200...500.

Учитывая исключительную сложность гидромеханических и тепловых явлений в непрерывно меняющем направление турбулентном потоке воды в каналах пластинчатых подогревателей, задачу о теплоотдаче решают не аналитически, а экспериментально в форме связи между критериями подобия.

Принципы регулирования отпуска тепла потребителям в системах централизованного теплоснабжения. Характеристика основных видов и методов регулирования. Обоснование качественного и количественного методов регулирования.

В конечном счете вырабатываемое и передаваемое системой теплоснабжения тепло используется для получения либо поддержания необходимой температуры различных сред (воздух помещений, вода горячего водоснабжения и т. п.), которые или окружают человека, или используются им в быту и на производстве.

Передача тепла системы теплоснабжения в конечные нагреваемые среды осуществляется нагревательными приборами местных систем теплопотребления, по теплоотдаче которых судят о качестве всего централизоранного теплоснабжения. Совокупность мероприятий по изменению теплоотдачи, приборов в соответствии с изменением потребности в тепле нагреваемых ими сред называется регулированием отпуска тепла. От правильной организаций и надлежащего осуществления регулирования во многом зависят качество и экономичность теплоснабжения.

Несмотря; на значительное конструктивное разнообразие применяемых нагревательных приборов, все они, как правило, являются теплообменниками поверхностного типа, теплоотдачу которых в переменных режимах наиболее-целесообразно определять по формуле:

(5.1)

где W — тепловой.эквивалент нагреваемой или греющей среды, кДж/(ч-°С); — основной коэффициент нагрева нагреваемой среды или основной коэффициент охлаждения греющей среды; — максимальная разность двух температур теплообменивающихся сред: начальной температуры горячей (греющей) среды tгр.н и начальной температуры холодной (нагреваемой) среды tнагр.н

В формулу (5.1) введем дополнительно коэффициент для учета возможных перерывов в работе аппарата:

(5.2)

Коэффициент продолжительности работы прибора может изменяться от нуля до единицы. При = 0 прибор выключен, при. = 1 прибор работает непрерывно.

Анализ формулы (5.2) показывает, что практически изменять (регулировать) теплоотдачу нагревательного прибора можно изменением только трех величин: начальной температуры поступающей в прибор греющей среды tгр.н, расхода этой среды Gг=Wг/cг (здесь сг — удельная теплоемкость среды) и значения коэффициента . В зависимости от того, изменением какой из трех величин осуществляется изменение теплоотдачи нагревательного прибора, различают следующие виды регулирования:

- качественное, когда изменяют tгр.н при постоянных значениях Gг и ;

- количественное, когда изменяют Gr, оставляя постоянными значения tгр.н и

- качественно-количественное при одновременном изменении tгр.н и Gr и. постоянном значении ;

- прерывистое (регулирование пропусками), когда периодически включают и выключают прибор, т. е. изменяют значение коэффициента при неизменных значениях tгр.н и Gr. Например, если в течение 1 ч аппарат включен только 45 мин, а 15 мин выключен, то р=45/60 = 0,75.

По числу одновременно регулируемых приборов различают регулирование:

- приборное (индивидуальное), когда регулированию подвергается единичный прибор;

- групповое, когда из одной точки одновременно регулируется несколько однотипных приборов одного назначения.

По числу охватываемых приборов групповое регулирование может быть весьма различным. Так, групповое регулирование в отоплении может осуществляться в пределах одной квартиры (квартирное регулирование), в пределах одного фасада здания (пофасадное регулирование), во всем здании (абонентское регулирование), в нескольких зданиях (квартальное, микрорайонное, общерайонное регулирование). Наконец, если теплоотдача приборов отопления всех зданий, теплоснабжаемого района регулируется из одного центра, каким обычно является источник тепла, то такое групповое регулирование называется центральным. Чем крупнее групповое регулирование, тем в меньшей степени оно способно удовлетворить некоторые частные требования, предъявляемые к теплоотдаче более мелких групп приборов, входящих в общую группу. Например, единое регулирование нагревательных приборов всего здания не может удовлетворить разных требований, предъявляемых к теплоотдаче приборов, расположенных на северном и южном фасадах дома. В связи с этим в практике теплоснабжения наибольшее распространение получило комбинированное регулирование, при котором центральное регулирование температуры воды сочетается с местным регулированием расхода теплоносителя в отдельных группах приборов (в отоплении) или даже у отдельных приборов (калориферы вентиляции, теплообменники горячего водоснабжения).

По принципу снабжения теплом нагреваемой среды регулирование отпуска тепла может носить пассивный или активный характер. Если температура, нагреваемой среды (например, воздуха помещений) не оказывает влияния на количество поступающего в эту среду тепла, то такое регулирование будет пассивным, и наоборот, если количество отдаваемого прибором тепла регулируется (прямо или косвенно) по заданной температуре этой среды, то такое регулирование будет активным. Например, наиболее часто применяемое в отоплении комбинированное регулирование, состоящее из центрального изменения температуры,воды и местного (у абонентов) автоматического поддержания постоянства расхода воды, является пассивным регулированием, ибо в данном случае получаемое внутренним воздухом тепло не связано с температурой воздуха, которая под влиянием ряда факторов (солнечная инсоляция, повышенные внутренние тепловыделения и т. п.) может отклоняться от нормированного значения. Если же специальная автоматика, получающая импульс от температуры внутреннего воздуха, будет изменять расход теплоносителя через прибор и тем самым поддерживать температуру воздуха на заданном уровне, то такое регулирование отпуска тепла будет иметь активный характер.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: