При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.
Цель данной работы: теоретическое обоснование и необходимость практического применения теоремы Коши-Бине:
Пусть
,
-
и
-матрицы соответственно,
и 
Тогда 
Другими словами, при
определитель матрицы
является суммой произведений всевозможных миноров порядка
в
на соответствующие миноры матрицы
того же самого порядка
Работа состоит из четырех глав, содержит заключение, список литературы и приложение программы для теоремы Коши-Бине. В главе 1 рассматриваются элементы линейной алгебры – матрицы, операции над матрицами и свойства сложения матриц, и умножения на скаляр. Глава 2 посвящается умножению матриц и его свойств, а также транспонирование произведения двух матриц. В главе 3 рассматриваются обратимые и элементарные матрицы. В главе 4 вводиться понятие определителя квадратной матрицы, рассматриваются свойства и теоремы об определителях, а также приводится доказательство теоремы Коши-Бине, что является целью моей работы. В дополнение прилагается программа показывающая механизм нахождения определителя произведения двух матриц.






