Уравнения движения газа

Для их получения применим второй закон Ньютона к элементарной жидкой частице, имеющей в некоторый момент форму куба с гранями (рис. 3.1).

Рис. 3.1

Жидкая частица – это перемещающаяся в пространстве и меняющий свою форму объем, содержащий в разные моменты времени одни и те же атомы и молекулы газа. Тем самым его масса постоянная. Для простоты вывода будем считать, что за короткое время куб не меняет своей формы и смещается по всем направлениям на расстояние, много меньшее его размеров.

Определим сначала силу, действующую на куб, например в направлении оси . Она, очевидно, равна разности давлений на левой и правой границах, умноженной на их площади (иных сил по предположению нет):

.

Сила равна ускорению жидкой частицы в направлении , умноженному на его массу :

. (5)

Заменяя в правом выражении для разность давлений через производную от давления по и приравнивая его к (5), приходим к уравнению, описывающему движение газа вдоль оси :

. (6)

Точно также получаем уравнения движения по направлениям :

, (7)

, (8)

имеющие как и в (6), очевидный физический смысл. В векторной форме уравнения (6) – (8) имеют вид

. (9)

Поясним, что (6) – (9) через обозначена полная (субстанциональная, т.е связанная частицами газа) производная по времени какой-либо величины, характеризующей данную неизменную массу газа.

Раскрыв через частные производные по и в соответствии с правилом , придем к уравнениям движения Эйлера

. (10)

Будучи записаны покоординатно, они принимают вид

, (11)

, (12)

. (13)

В отличие от течения грунтовых вод, градиенты давления в уравнениях газа (6) – (13) определяют компоненты ускорения вещества, а не компоненты его скорости (сравнение с законом Дарси). Уравнения (4), (11) – (13) содержат пять неизвестных величин - . Для их замыкания естественно использовать закон сохранения энергии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: