double arrow

Математическая индукция

В математике широко используется еще один вид индукции - полная математическая (или математическая) индукция.

Математическая индукция - специальный метод доказательства.

Заметим, что метод математической индукции неоднократно включался в школьную программу и неоднократно исключался из нее как предмет специального изучения. В любом случае он может разъясняться в связи с решением задач.

Полная индукция находит ограниченное применение в процессе обучения.

Примером полной индукции может служить рассуждение, которым следовало бы завершить доказательство теоремы об измерении вписанного угла, если она доказывается отдельно для случая, когда центр окружности лежит на стороне угла, внутри или вне его.

Если а1 - случай "центр лежит на стороне угла", а2 - "центр лежит внутри угла" и а - "центр лежит вне угла", то {а1, а2, а3}- множество всевозможных частных случаев и, если С {а) (означает "теорема доказана в случае а"), то с помощью рассуждения по схеме полной индукции ,- заключаем, что теорема доказана для всех возможных случаев, или что "теорема доказана". Это рассуждение обычно опускается в учебниках. Целесообразно его явно высказать, чтобы научить этому методу учащихся.

Обычно, когда говорят "индуктивные методы обучения", имеют в виду применение неполной индукции в обучении. Дальше, говоря "индукция", будем иметь в виду неполную индукцию.

Ввиду недостоверности заключения индукция не может служить методом доказательства. Но она является мощным эвристическим методом, т. е. методом открытия новых истин. В таком качестве индукция должна широко применяться в школьном обучении в рамках методов, ориентированных на обучение учащихся деятельности по приобретению новых знаний.

Индукция, так же как и аналогия, может привести к ложному заключению. Так, например, вычисляя значения выражения n2+n+17 при n = 1,2,3,..., 15, мы получаем неизменно простые числа, и это наводит на мысль, что значение этого выражения при любом натуральном n есть простое число. Иначе говоря, на основании пятнадцати частных посылок получено общее заключение, относящееся к бесконечному множеству частных случаев, и это заключение оказывается ложным, так как уже при n = 16 получаем составное число

162+16+17=16*17+17=172.

В истории математики были случаи, когда известные математики ошибались в своих индуктивных выводах. Например, П. Ферма предположил, что все числа вида 22n+ 1 простые, исходя из того, что при n = 1,2,3,4 они являются таковыми, но Л. Эйлер нашел, что уже при n = 5 число 232+ 1 не является простым (оно делится на 641).

Однако возможность получения с помощью индукции ложного заключения не является основанием для отрицания роли индукции в школьном обучении математике. Во-первых, применение индукции в обучении корректируется и направляется учителем к открытию истин. Во-вторых, нужно добиваться понимания учащимися правдоподобного характера индуктивного заключения. Поэтому, применяя индукцию, необходимо всячески подчеркивать, что заключение является лишь предположением, гипотезой, которое может быть доказано (если оно истинно) или опровергнуто (если оно ложно).

Например, когда учащиеся открывают свойство суммы углов треугольника с помощью измерений, необходимо разъяснить им, что мы можем высказать лишь предположение (гипотезу) о том, что "во всяком треугольнике сумма углов равна 180°". Во-первых, результаты опыта лишь близки к 180°; во-вторых, даже предполагая, что все отклонения в одну или другую сторону вызваны неизбежными погрешностями измерений и для каждого из 30 треугольников, в которых мы производили измерения углов, сумма углов действительно равна 180°, мы не можем на этом основании заключить, что она равна 180° в любом треугольнике.

Такими разъяснениями мы и добиваемся понимания учащимися правдоподобного характера индуктивного заключения.

Надо отличать возможность ложного заключения от ошибочного применения индукции. В практике иногда встречаются ошибочные применения индукции, когда учащимся не предъявляется необходимое разнообразие частных посылок. Приведем пример. Учитель хотел привести учеников к открытию индуктивным путем правила умножения десятичных дробей, но из-за недостатка времени предложил только один пример, в котором во множимом и множителе вместе было три десятичных знака. После разъяснения способа умножения на этом конкретном примере учитель поставил перед классом вопрос: "Какое же правило мы нашли для умножения десятичных дробей?" Ученик отчеканил "правило": "Чтобы умножить десятичные дроби, мы умножаем их как целые числа, не обращая внимания на запятые, а в произведении отделяем справа три десятичных знака". Вот к какому открытию можно привести учащихся, если строить индукцию на базе одной частной посылки! Разумеется, возможно, что кто-нибудь из учащихся догадался, как правильно сформулировать общее правило, но наша цель-создние такой педагогической ситуации, в которой все или по крайней мере большинство учащихся догадаются, как это сделать, а для этого нужно правильно подобрать последовательность частных посылок.

Совершенно очевидно, что на вопрос, сколько надо рассматривать частных посылок и какие, чтобы подвести учащихся к открытию общей закономерности, нельзя дать ответ, пригодный на все случаи применения индукции и для всех учащихся; Мы должны заботиться, чтобы частное содержание, которое выражается в посылках и не должно входить в общее заключение, варьировалось, т. е. видоизменялось от посылки к посылке, чтобы облегчить учащимся выявление того общего, неизменного, содержащегося во всех посылках, что и должно составлять содержание заключения. В приведенном выше примере частное содержание, которое должно варьироваться в посылках, это число десятичных знаков во множимом и множителе.

На отдельных этапах обучения, в частности в IV-V классах, обучение математике ведется преимущественно индуктивными методами. Здесь индуктивные заключения достаточно убедительны психологически и в большинстве остаются пока (на этом этапе обучения) недоказанными. Можно обнаружить лишь изолированные "дедуктивные островки", состоящие в применении несложных дедуктивных рассуждений в качестве доказательств отдельных предложений.

В дальнейшем обучении индукция уступает первенство дедукции. Однако она не исключается, меняется лишь ее роль. Если в IV-V классах она служит основным методом обучения, в дальнейшем она становится вспомогательным. С помощью индукции (или аналогии) мы открываем то, что подлежит доказательству дедуктивным путем.

Сочетание индукции с дедукцией в процессе обучения математике вполне правомерно. Когда говорят "математика - дедуктивная наука", то термин "математика" понимается здесь в смысле готовая, уже построенная теория (или совокупность таких теорий). Когда же речь идет о методах обучения математике, то здесь, имеется в виду привлечение самих учащихся к деятельности по построению системы математических знаний, разумеется, в той мере, в какой это им доступно под руководством учителя. В процессе же построения системы математических знаний наряду с дедукцией применяются и другие методы (наблюдение, опыт, индукция, аналогия и др.), в основе которых лежат правдоподобные рассуждения.

Приведем пример. Признак перпендикулярности прямой и плоскости - известная теорема стереометрии. Можно сообщить учащимся формулировку теоремы, изложить ее доказательство. Этот подход малоэффективен.

Можно поступить иначе. Определение перпендикулярности прямой к плоскости неэффективно: мы не можем проверить перпендикулярность данной прямой к любой прямой плоскости, таких прямых бесконечно много. Возникает задача: нельзя ли указать некоторое достаточное условие перпендикулярности прямой к любой прямой плоскости?

Возникает гипотеза: перпендикулярность к одной прямой плоскости. Но она быстро опровергается, можно построить модель прямой, перпендикулярной к одной прямой плоскости, но не перпендикулярной к другой.

Возникает другая гипотеза: перпендикулярность к двум прямым плоскости. Это уже кажется более правдоподобно (пока все учащиеся берут две пересекающиеся прямые плоскости). Однако и здесь обнаруживается противоречащий случай (если взять параллельные прямые плоскости, можно указать прямую, перпендикулярную им, но не перпендикулярную некоторой третьей прямой плоскости).

Наконец, формулируется уточненная гипотеза: если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна любой прямой плоскости, т. е. и самой плоскости.

Таким путем мы открываем то, что подлежит дедуктивному доказательству.

Приведенный пример относится к курсу IX класса. Он подтверждает, что и на этом этапе обучения индуктивные методы не теряют своего значения.

Дедукция

Дедукция (в сравнении с индукцией) обладает меньшей эвристической силой. Однако отождествлять дедуктивные доказательства с догматической формой изложения все же не следует. Дедуктивное доказательство объясняет изучаемый факт; в педагогических целях оно может быть дополнено элементами разъяснений, мотивировок, указаний на общее направление рассуждения, краткой аргументацией выбора математического метода и т.д.

Дедукция (от лат. deductio-выведение) в широком смысле представляет собой форму мышления, состоящую в том, что новое предложение (а точнее, выраженная в нем мысль) выводится чисто логическим путем, т. е. по определенным правилам логического вывода (следования) из некоторых известных предложений (мыслей).

Впервые теория дедукции (логического вывода) была разработана Аристотелем. Эта теория развивалась, совершенствовалась с развитием науки логики. Особое развитие с учетом потребностей математики она получила в виде теории доказательства в математической логике.

Дедуктивное рассуждение (умозаключение) отличается от индуктивного или рассуждения по аналогии достоверностью заключения, т. е. в дедуктивном рассуждении заключение истинно, по крайней мере когда истинны все посылки. В отличие от индукции (неполной) и аналогии в дедуктивном рассуждении нельзя получить ложное заключение из истинных посылок. Именно поэтому дедуктивные рассуждения используются в математических доказательствах (доказательствах математических предложений).

Широкое применение дедукции в математике обусловлено аксиоматическим методом построения математических теорий.

Аксиоматический метод по существу представляет собой своеобразный метод установления истинности предложений математической теории, состоящий в следующем: некоторые предложения, выражающие основные свойства первоначальных понятий или отношения между ними, принимаются за истинные. Это исходные предложения, или аксиомы теории. Истинность же остальных предложений, теорем этой теории, устанавливается с помощью дедуктивных доказательств, т. е. все остальные предложения теории логически выводятся (дедуцируются) из предшествующих им предложений, т. е. из аксиом, определений и ранее доказанных теорем. Вот почему математику и называют "дедуктивной" наукой (в ней все выводится, "дедуцируется" из некоторых исходных фактов, выраженных в аксиомах).

Дедукция как метод обучения математике включает:

1) обучение дедуктивным доказательствам и

2) обучение расширению дедуктивной системы включением в нее новых предложений, т. е. преобразованию совокупности предложений, полученных опытным путем, или с помощью индукции, аналогии или других эвристических методов, в систему предложений, упорядоченных отношением следования, расширяющую уже изученный фрагмент теории.

Рассмотрим эти два аспекта дедукции как метода обучения.

1) Под обучением доказательству мы понимаем обучение мыслительным процессам поиска и построения доказательства, а не воспроизведению и заучиванию готовых доказательств. В таком понимании это педагогическая задача первостепенного общеобразовательного и воспитательного значения, выходящего за рамки математического образования. Учить доказывать означает прежде всего учить рассуждать, а это одна из основных задач обучения вообще. Что же касается значимости этой задачи для усвоения математических знаний, то она соразмерна значимости доказательства в самой математике.

Поиск доказательств осуществляется средствами, отличными от дедуктивных, и вопрос об обучении поиску доказательства будет предметом следующего параграфа.

Обучение поиску и построению доказательств направляется тремя основными вопросами: "Что?", "Откуда?", "Как?"

а) Что? - что доказывается? Каково "доказываемое" предложение, для которого мы ищем доказательство? Как оно формулируется? Все ли понятно в этой формулировке? Нельзя ли иначе формулировать доказываемое предложение? Что "дано"? Что "требуется доказать"? Это далеко не полный перечень вопросов, которые мы объединяем в одном вопросе "Что?". Они связаны с изучением доказываемого предложения, с возможным приведением его к более удобному для выяснения условий и заключения виду. Например, представление доказываемых предложений в виде импликаций с использованием связки "если..., то..." облегчает учащимся выявление того, что "дано" (предложение, записанное между словами "если" и "то") и что "требуется доказать" (предложение, записанное после слова "то"). Например, расчленение теоремы "Вертикальные углы равны" на условие и заключение обычно -вызывает затруднения у учащихся, но эти затруднения сразу устраняются, если сформулировать теорему в виде импликации: "Если углы вертикальные, то они равны". Аналогично теорема "Диагонали ромба взаимно перпендикулярны" представляется в форме "Если параллелограмм - ромб, то его диагонали взаимно перпендикулярны", в которой легко определить условие и заключение.

Необходимо выяснять все условия теоремы. Так, мы не сможем доказать, что среднее арифметическое двух чисел больше их среднего геометрического, если не учтем, что это верно лишь для двух положительных и неравных между собой чисел. Это подчеркивается в следующей записи этой теоремы в виде импликации:

б) Откуда? - откуда, из каких посылок следует (может следовать) доказываемое предложение? Из каких уже известных истинных предложений данной области (аксиом, определений, ранее доказанных теорем) можно было бы "вывести" это предложение?

Ответ на этот вопрос требует концентрации внимания на содержании условий и заключения доказываемого предложения с целью выделения тех уже известных предложений, которые как-то связаны с этими условиями. Совокупность этих предложений составляет базу для поиска доказательства. Эти совокупности могут быть различными, указывая на различные направления поиска, приводящие к различным доказательствам одной и той же теоремы. Например, готовясь к доказательству теоремы о трех перпендикулярах, мы можем выделить (вспомнить) совокупность известных предложений, связанных с перпендикулярностью прямой и плоскости (определение, признак), но можем также думать о предложениях, связанных с перпендикулярностью векторов. В результате мы получаем два направления поиска и два различных доказательства теоремы о трех перпендикулярах.

в) Как? - как доказываемое предложение получается (выводится) из ранее известных предложений (аксиом, определений, теорем)?

Этот вопрос находит в массовой практике обучения простой ответ: "С помощью рассуждения". Так разъясняется понятие доказательства в ныне действующих и пробных учебных пособиях по геометрии для VI-Х классов школы. Этим разъяснением интуитивное понятие доказательства сводится к другому интуитивному же понятию рассуждения, которое, по-видимому, считается более ясным. Однако вряд ли слово "рассуждение" говорит учащимся намного больше, чем слово "доказательство", не говоря уже о том, что не всякое рассуждение может служить доказательством (имеет доказательную силу).

Можно предполагать (и некоторые эксперименты подтверждают), что по вопросу о том, как мы рассуждаем, можно подняться в школьном обучении (по крайней мере в школах с углубленным изучением математики или на факультативных занятиях) на более высокий уровень, можно достичь некоторого прогресса в понимании того, что такое доказательство, в уточнении этого понятия.

Выделим в обучении доказательству два основных уровня. На первом уровне (IV-VII классы) используемые в доказательствах (неявно) логические средства вывода не выявляются, не разъясняются, основное внимание уделяется выяснению того, "что доказывается" и "из чего это следует", но не "как это следует". На этом уровне доказательство рассматривается вообще как рассуждение, с помощью которого истинность одного (доказываемого) предложения устанавливается на основе истинности других предложений.

На втором уровне (в старших классах, на факультативных занятиях или в школах с углубленным изучением математики) учащимся могут быть разъяснены простейшие правила вывода и на этой основе уточнено понятие доказательства. Это уточнение достигается с помощью представления доказательства в определенной, стандартной форме, поддающейся точному описанию. На этом уровне учащимся становится доступным анализ доказательства, выявление его логической структуры, используемых в нем правил вывода, запись содержательного доказательства в полной логической форме, т. е. его формализация.

Разумеется, в практике обучения всегда применялись и будут применяться содержательные доказательства, представленные в виде обычных рассуждений и уровень строгости которых адекватен возможностям учащихся. Этот уровень должен естественным образом повышаться от класса к следующему в соответствии с развитием этих возможностей (а не наоборот, как это наблюдается в некоторых учебных пособиях, в которых уровень строгости доказательств в VI классе выше, чем в IX).

В практике обучения учитель, как правило, сам доказывает в классе каждую подлежащую изучению теорему (а то и дважды или даже трижды повторяет ее). Такой метод ориентирован главным образом на запоминание учащимися доказательств определенных теорем, и вряд ли можно таким методом научить учащихся доказывать. Сочетая же этот метод с методом обучения поиску доказательства, мы научим их доказывать. Сам же поиск доказательства, как и всякий поиск, требует творческого мышления и развивает его. Поэтому метод обучения поиску доказательства усиливает влияние обучения на умственное развитие учащихся, на развитие их творческого мышления.

2) В процессе обучения (опытным путем или с помощью эвристических методов) открываем, что при условии А имеет место некоторое свойство В. В таком случае предстоит доказать теорему, имеющую вид импликации А В, где А - условие, а В - заключение теоремы.

После доказательства теоремы А В изученный фрагмент теории, например геометрии, расширяется, включая и это предложение, которое в дальнейшем уже может использоваться в качестве одной из посылок при доказательстве других, новых теорем.

Однако расширено фрагмента теории только одним предложением, характерное для установившейся методики обучения, не является наиболее рациональным способом продвижения в теорию, расширения знаний применением дедукции в качестве метода обучения. Во-первых, этот способ не отражает специфики метода дедукции в самой математике. При описании реальных ситуаций, как правило, получают не одно предложение, а совокупность предложений, которая впоследствии исследуется с целью логического упорядочения, превращения в "маленькую" теорию, присоединяемую к уже изученному (построенному) фрагменту "большой" теории. Во-вторых, обычное использование дедукции в обучении нерационально, малоэффективно и с дидактической точки зрения. Выдвигаемый в методической литературе тезис обучения "укрупненными блоками" применительно к дедуктивно построенному фрагменту учебного материала по существу означает продвижение в теорию не единичными предложениями, а маленькими теориями, описывающими определенные ситуации, фигуры и т. п.

Сравнение и аналогия

Сравнение и аналогия - логические приемы мышления, используемые как в научных исследованиях, так и в обучении.

С помощью сравнения выявляется сходство и различие сравниваемых предметов, т. е. наличие у них общих и необщих (различных) свойств.

Например, сравнение треугольника и четырехугольника раскрывает их общие свойства: наличие сторон, вершин, углов, столько же вершин и углов, сколько сторон, а также различие: у треугольника три вершины (стороны), у четырехугольника - четыре. Сравнение параллелограмма и трапеции позволяет выявить их общие свойства: они оба четырехугольники, оба имеют параллельные стороны, - и различие: в одном - две пары параллельных сторон, в другом - одна. Сравнение обыкновенных и алгебраических дробей выявляет их сходство: наличие числителя и знаменателя, отсутствие значения, когда знаменатель обращается в нуль, и т.д., - и различие: в одном случае числитель и знаменатель - числа, в другом - алгебраические выражения.

Сравнение приводит к правильному выводу, если выполняются следующие условия:

1) сравниваемые понятия однородны;

2) сравнение осуществляется по таким признакам, которые имеют существенное значение.

Эти два условия выполняются в приведенных выше сравнениях: треугольник и четырехугольник - однородные понятия (многоугольники), параллелограмм и трапеция - четырехугольники, обыкновенные и алгебраические дроби - выражения. Во всех трех случаях сравнение осуществлено по существенным признакам (если, например, включили бы в общие свойства параллелограмма и трапеции тот факт, что они оба обозначены одними и теми же буквами АВСД, или считали бы различием обозначение их различными буквами, то это было бы ошибочным подходом к сравнению). Сравнение подготавливает почву для применения аналогии. С помощью аналогии сходство предметов, выявленное в результате их сравнения, распространяется на новое свойство (или новые свойства).

Рассуждение по аналогии имеет следующую общую схему:

1) А обладает свойствами А, В, С, Д;

2) В обладает свойствами А, В, С;

3) вероятно (возможно) В обладает и свойством Д.

Как видим, заключение по аналогии является лишь вероятным (правдоподобным), а не достоверным. Поэтому аналогия, как правило, не является доказательным рассуждением, т. е. рассуждением, которое может служить доказательством. ("Как правило" потому, что имеется исключение, связанное с особым видом аналогии, о котором речь пойдет дальше.) Однако в обучении, как, впрочем, и в науке, аналогия часто полезна тем, что она наводит нас на догадки, т. е. служит эвристическим методом. В обучении же математике не менее важно, чем учить доказывать, это учить догадываться, что именно подлежит доказательству и как найти это доказательство.

В приведенном выше разъяснении того, что такое аналогия, используется понятие "сходство", которое само нуждается в разъяснении. Когда говорят, например, о сходстве между людьми, между человеком и его изображением на фотоснимке или картине и т. п., интуитивно понимают, что означает сходство. Но можно ли в таком же смысле говорить, например, о сходстве между множеством учащихся класса и множеством А = {1,2,3,..., 30}, или между множеством точек прямой и множеством действительных чисел, или между множеством объектов на некотором участке и планом этого участка? Применение же аналогии в математическом исследовании, а поэтому и в обучении математике, часто характеризуется именно тем, что оно основано на глубоком, внутреннем "сходстве", а по существу на одинаковости структуры множеств предметов различной природы с отношениями, имеющими совершенно различный смысл, при отсутствии всякого внешнего "сходства" (в обычном смысле) между этими множествами. Это "структурное сходство", получившее точное математическое описание с помощью понятия изоморфизма, лежит в основе особого вида аналогии, приводящей в отличие от обычной аналогии к достоверным заключениям.

Например, в основе координатного метода лежит идея взаимно однозначного соответствия между множеством точек прямой (плоскости или пространства) и множеством действительных чисел (пар или троек чисел), переводящего некоторые отношения между точками в отношения между числами (парами или тройками чисел). Это взаимно однозначное соответствие является изоморфизмом, позволяющим осуществить однозначный перевод свойств с языка, описывающего структуру множества точек прямой (плоскости или пространства), на язык, описывающий структуру множества Я (^ или ^), и обратно.

Часто та или иная последовательность в изучении учебного материала обосновывается возможностью использования аналогии в обучении. Например, изучение десятичных дробей раньше обыкновенных объясняется не только тем, что именно десятичные дроби широко применяются в практике, но и возможностью использования при изучении арифметики десятичных дробей аналогии с арифметикой натуральных чисел. При изучении свойств алгебраических дробей можно использовать аналогию с обыкновенными дробями. Аналогия может служить базой для одновременного изучения арифметической и геометрической прогрессий.

Однако в установившейся практике обучения математике аналогия используется недостаточно. Иногда высказываются опасения, что с помощью аналогии мы можем прийти к ложным заключениям.

Следует отметить как недостаток, что (в практике обучения) опровержению мы почти не учим. Это является и серьезным упущением в общеобразовательном и воспитательном отношении, так как в жизни нередко возникает необходимость опровергать.

Мы не должны опасаться возникновения ложных заключений по аналогии. Необходимо лишь считать их гипотезами (предположениями). Ошибки, допускаемые в процессе поиска, исследования, вполне правомерны, так как чаще всего поиск ведется способом "проб и ошибок". В установившейся практике обучения, как правило, мы не даем учащимся, отвечающим на вопросы учителя, ошибаться. В этом отражается тот факт, что учебная деятельность учащихся является в основном лишь репродуктивной, а в такой деятельности ошибки недопустимы. Воспроизводить необходимо безошибочно. В продуктивной же, творческой деятельности ошибки неизбежны. Такого рода ошибками являются и те, которые появляются в результате применения аналогии в процессе поиска. Они являются составной частью метода проб и ошибок. Важно, чтобы учащиеся в поиске правильных ответов сами могли находить ошибочность возникающих в этом процессе предположений. Этому, разумеется, надо их учить.

Находить сходство, которое могло бы служить источником плодотворных рассуждений по аналогии, бывает нелегко даже в том случае, когда природа сравниваемых объектов одинакова.

Возьмем для примера две геометрические фигуры: треугольник и тетраэдр. В чем состоит сходство между этими фигурами? Треугольник - плоская фигура, тетраэдр - пространственная. Может быть, сходство в том, что грани тетраэдра - треугольники? Если даже принять, что в этом есть какое-то сходство (а пока не уточнено, что такое "сходство": можно понимать под этим что угодно), то вряд ли оно может быть источником для рассуждений по аналогии. Более глубокое исследование этих двух объектов позволяет обнаружить такое структурное сходство, которое является источником аналогии, ведущей к открытиям. Действительно, треугольник и тетраэдр - ограниченные выпуклые множества точек. Первое образовано минимальным числом прямых на плоскости (нет многоугольника с меньшим, чем три, числом сторон), второе - минимальным числом плоскостей в пространстве. Отсюда, разумеется, не следует, что все свойства этих фигур одинаковы. Но если мы уже изучили свойства треугольника и приступаем к изучению свойств тетраэдра, то установленное сходство в одних свойствах дает нам право предполагать (только предполагать), что и некоторые другие свойства треугольника "переводятся" аналогичным образом в свойства тетраэдра. Так, например, исходя из установленного сходства и из того, что "в треугольнике биссектрисы углов пересекаются в одной точке и эта точка - центр вписанной окружности", мы приходим к предположению, что "в тетраэдре биссекторные плоскости двугранных углов пересекаются в одной точке и эта точка - центр вписанной сферы", и т. д. Мы открываем новые свойства тетраэдра, рассуждая по аналогии. Эти свойства, разумеется, подлежат доказательству.

Другой пример. Параллелепипед - пространственный аналог параллелограмма: в параллелограмме противоположные стороны параллельны, в параллелепипеде противоположные грани параллельны. Рассуждая по аналогии, можно прийти к гипотезе, что в параллелепипеде, так же как и в параллелограмме, диагонали, пересекаясь, делятся точкой пересечения пополам. Но если видеть только сходство и не замечать различия, в частности, что в параллелограмме всего две диагонали, а в параллелепипеде - четыре, то мы упустим важное свойство, подлежащее доказательству, а именно, что все диагонали параллелепипеда пересекаются в одной точке. Как видим, применению аналогии должно предшествовать сравнение, с помощью которого выявляется как сходство, так и различие.

Сфера - пространственный аналог окружности. Эти две фигуры определяются как множества точек плоскости и пространства соответственно, характеризуемые одним и тем же свойством:

{ X: OX = r }

(множество всех точек плоскости (пространства), расстояние которых от данной точки О равно данному числу r).

Это наводит на догадку, что сфера обладает некоторыми свойствами, аналогичными свойствам окружности. Например, что свойства взаимного расположения прямой и окружности переводятся в свойства взаимного расположения плоскости и сферы:

1) Если расстояние от центра сферы до плоскости больше радиуса сферы, то плоскость и сфера не имеют общих точек.

2) Если расстояние от центра сферы до плоскости равно радиусу сферы, то плоскость и сфера имеют одну и только одну общую точку.

3) Если расстояние от центра сферы до плоскости меньше радиуса сферы, то плоскость и сфера пересекаются по окружности (т. е. имеют бесконечное множество общих точек, лежащих на окружности). Как видно, лишь в третьем случае проявляется различие между окружностью и сферой, которое должно учитываться при формулировке аналогичных свойств. Свойство касательной плоскости тоже может быть найдено с помощью аналогии.

Аналогия широко используется в преподавании математики благодаря своей наглядности и доступности.

Примеры:

1) при изучении десятичных дробей аналогия с натуральными числами;

2) свойства алгебраических дробей аналогичны свойствам обыкновенных дробей;

3) методы решения задач на составление уравнений первой степени аналогичны методам решения задач на составление уравнений второй степени;

4) свойства арифметической и геометрической прогрессий;

5) свойства планиметрии и стереометрии.

Аналогия может привести к ложным выводам.

Выводы, полученные по аналогии, требуют обязательного обоснования, так как не исключено то, что они могут оказаться ошибочными.

Пример:

Учитель спрашивает ученика:

- Как изменится площадь прямоугольника, если его основание увеличить в 2 раза, а боковую сторону уменьшить также в два раза?

- Площадь не изменится.

- А если основание прямоугольника увеличить на 20%, а боковую сторону уменьшить на 20%?

- Площадь не изменится.

Вопрос: Прав ли школьник?

Ошибки:

1) при сокращении и ;

2) () и .

3) и


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: