double arrow

Автоматизированные системы управления технологическими процессами

Материал темы лекции содержит содержание следующих вопросов: структура АСУТП; назначение, цели и функции АСУТП; примеры информационных и управляющих АСУТП; основные разновидности АСУ ТП; состав АСУ ТП.

Структура АСУТП. См. также содержание лекций 1, 2,3.

При построении средств современной промышленной автоматики (обычно в виде АСУ ТП) используется иерархическая информационная структура с применением на разных уровнях вычислительных средств различной мощности. Примерная общая современная структура АСУ ТП показана на рисунке 14.1:

ИП - измерительные преобразователи (датчики),

ИМ - исполнительные механизмы,

ПЛК - программируемый логический контроллер,

ПрК - программируемый (настраиваемый) контроллер,

ИнП- интеллектуальные измерительные преобразователи,

ИнИМ - интеллектуальные исполнительные устройства,

Модем - модулятор/демодулятор сигналов,

ТО - техническое обеспечение (аппаратная часть, «железо»),

ИО - информационное обеспечение (базы данных),

ПО - программное обеспечение,

КО - коммуникационное обеспечение (последовательный порт и ПО).

ПОпл - программное обеспечение пользователя,

ПОпр - программное обеспечение производителя,

Инд - индикатор.

Рисунок 14.1 - Типовая функциональная схема современной АСУ ТП.

В настоящее АСУ ТП обычно реализуются по схемам:

1. 1-уровневой (локальная система), содержащей ПЛК, или моноблочный настраиваемый контроллер (МНК) обеспечивающие индикацию и сигнализацию состояния контролируемого или регулируемого ТП на передней панели,

2. 2-уровневой (централизованная система), включающих:

1. На нижнем уровне несколько ПЛК с подключенными к ним датчиками и исполнительными устройствами,

2. На верхнем уровне – одна (возможно несколько) операторских (рабочих) станций (автоматизированных рабочих мест (АРМ) оператора).

Обычно рабочая станция или АРМ - это ЭВМ в специальном промышленном исполнении, со специальным программным обеспечением, – системой сбора и визуализации данных (SCADA-системы).

Типовая функциональная схема одноуровневой АСУ ТП показана на рисунке 14.2

Рисунок 14.2 - Типовая функциональная схема одноуровневой системы автоматического управления САУ.

Основные функции элементов:

ПЛК:

1. Прием дискретных сигналов от преобразователей технологического оборудования,

2. Аналого-цифровое преобразование (АЦП) аналоговых сигналов, поступающих на входы из преобразователей,

3. Масштабирование и цифровая фильтрация данных после АЦП,

4. Обработка принятых данных по программе функционирования,

5. Генерация (в соответствии с программой) управляющих дискретных сигналов и подача их на исполнительные устройства,

6. Цифро-аналоговое преобразование (ЦАП) выходных информационных данных в выходные аналоговые сигналы,

7. Подача управляющих сигналов на соответствующие исполнительные устройства,

8. Защита от потери работоспособности из-за зависания процессора с помощью сторожевого таймера,

9. Сохранение работоспособности при временном отключении электропитания (за счет источника бесперебойного питания с аккумулятором достаточной емкости),

10. Контроль за работоспособностью датчиков и достоверностью измеренных величин,

11. Индикация текущих и интегральных значений измеряемых величин,

12. Контрольная сигнализация состояния управляемого процесса,

13. Контрольная световая и символьная сигнализация состояния контроллера,

14. Возможность конфигурации (настройки параметров) через ПК подключаемый, к специальному порту.

Преобразователи (Пр):

1. Преобразование значения измеряемой величины (температуры, давления, перемещения и т.д.) в непрерывный или импульсный (для счетных входов ПЛК) электрический сигнал.

Исполнительные устройства (ИУ):

1. Преобразование управляющих электрических непрерывных или импульсных сигналов в механическое перемещение исполнительных механизмов, электронное управление током в силовых цепях и т.д.

Устройство согласования (при необходимости):

1. Гальваническая или другие виды развязки между ПЛК и исполнительными устройствами (ИУ),

2. Согласование допустимых значений выходного тока управляющих каналов ПЛК и тока, необходимого для нормальной работы ИУ.

При недостаточном числе каналов одного ПЛК используется схема распределенного ввода/вывода с использованием других (управляемых, ведомых ПЛК) или дополнительных контроллеров (модулей) ввода/вывода.

Типовая функциональная схема одноуровневой АСУ ТП с распределенным вводом/выводом показана на рисунке 14.3:

Рисунок 14.3 - Типовая функциональная схема одноуровневой АСУ ТП с распределенным вводом/выводом

Типовая функциональная схема 2-уровневой АСУТП показана на рисунке 14.4.

Рисунок 14.4 - Типовая функциональная схема 2-уровневой АСУТП

Все ПЛК и АРМы объединены промышленной информационной сетью, обеспечивающей непрерывный обмен данными. Преимущества: позволяет распределить задачи, между узлами системы, повысив надежность ее функционирования.

Основные функции нижнего уровня:

1. Сбор, электрическая фильтрация и АЦП сигналов с преобразователей (датчиков);

2. Реализация локальных АСУ технологического процесса в объеме функций ПЛК одноуровневой системы;

3. Реализация аварийной и предупредительной сигнализации;

4. Организация системы защит и блокировок;

5. Обмен текущими данными с ПК верхнего уровня через промышленную сеть по запросам ПК.

Основные функции верхнего уровня:

1. Визуализация состояния технологического процесса;

2. Текущая регистрация характеристик технологического процесса;

3. Оперативный анализ состояния оборудования и технологического процесса;

4. Регистрация действий оператора, в том числе при аварийных сообщениях;

5. Архивация и длительное хранение значений протоколов технологического процесса;

6. Реализация алгоритмов «системы советчика»;

7. Супервизорное управление;

8. Хранение и ведение баз данных:

- параметров техпроцессов,

- критических параметров оборудования,

- признаков аварийных состояний технологического процесса,

- состава допускаемых к работе с системой операторов (их паролей).

Таким образом, нижний уровень реализует алгоритмы управления оборудованием, верхний - решение стратегических вопросов функционирования. Например, решение включить или выключить насос принимается на верхнем уровне, а подача всех необходимых управляющих сигналов, проверка состояния насоса, реализация механизма блокировок выполняется на нижнем уровне.

Иерархическая структура АСУ технологического процесса подразумевает:

1. Поток команд направлен от верхнего уровня к нижнему,

2. Нижний отвечает верхнему по его запросам.

Это обеспечивает предсказуемое поведение ПЛК при выходе из строя верхнего уровня или промышленной сети, поскольку такие неисправности воспринимаются нижним уровнем как отсутствие новых команд и запросов.

При конфигурации ПЛК устанавливается: до какого времени после получения последнего запроса ПЛК продолжает функционировать, поддерживая последний заданный режим, после чего переходит в нужный при данной аварийной ситуации режим работы.

Например, структура организации АСУТП некоторого производства бетона на бетоносмесительных установках по логике построения можно разделить на два основных уровня :

- нижний уровень – уровень реализации задачи на базе промышленных контроллеров (PLC);

- верхний уровень – уровень реализации задачи визуализации процессов, происходящих при производстве бетона на БСУ (SCADA).

На нижнем уровне система решает следующие основные задачи:

- сбор первичной информации с исполнительных узлов БСУ;

- анализ собранной информации;

- отработка логики технологического процесса при производстве бетона с учетом всех современных требований;

- выдача управляющих воздействий на исполнительные устройства.

На верхнем уровне система решает другие задачи:

- визуализация основных технологических параметров с БСУ (состояние исполнительных органов, ток потребления миксера, вес дозируемых материалов и т.д.);

- архивирование всех параметров процесса производства бетона;

- выдача команд на воздействие исполнительными органами БСУ;

- выдача команд на изменение параметров внешних воздействий;

- разработка и хранение рецептур бетонных смесей.

Назначение АСУТП. АСУТП предназначена для выработки к реализации управляющих воздействий на технологический объект управления.

Технологический объект управления (АСУТП) представляет собой совокупность технологического оборудования и реализованного на нем по соответствующим инструкциям или регламентам технологического процесса производства продуктов, полупродуктов, изделий или энергии,

К технологическим объектам управления относятся:

- технологические агрегаты и установки (группы станков), реализующие самостоятельный технологический процесс;

- отдельные производства (цехи, участки), если управление этим производством носит, в основном, технологический характер, то есть заключается в реализации рациональных режимов работы взаимосвязанного технологического оборудования (агрегатов, участков).

Совместно функционирующие ТОУ и управляющая ими АСУТП образуют автоматизированный технологический комплекс (АТК). В машиностроении и других дискретных производствах в качестве АТК выступают гибкие производственные системы (ГПС).

Термины АСУТП, ТОУ и АТК должно употребляться только в приведенных сочетаниях. Совокупность других систем управления с управлением ими технологическим оборудованием не является АТК. Система управления в других случаях (не в АТК) не является АСУТП и т.д. АСУТП - это организационно-техническая система управления объектом в целом в соответствии с принятым критерием (критериями) управления, в которой сбор и обработка необходимой информации осуществляется с применением средств вычислительной техники.

Приведенная формулировка подчеркивает:

- во-первых, использование в АСУТП современных средств вычислительной техники;

- во-вторых, роль человека в системе как субъекта труда, принимающего содержательное участие в выработке решений по управлению;

- в-третьих, что АСУТП - это система, осуществляющая обработку технологической и технико-экономической информации;

- в-четвертых, что цель функционирования АСУТП заключается в оптимизации работы технологического объекта управления в соответствии с принятым критерием (критериями) управления путем соответствующего выбора управляющих воздействий.

Критерий управления в АСУТП - это соотношение, характеризующее степень достижения целей управления (качество функционирования технологического объекта управления в целом) и принимающее различные числовые значения в зависимости от ис­пользуемых управляющих воздействий. Отсюда следует, что критерий обычно является технико-экономическим (например, себестоимость выходного продукта при заданном его качестве, производительность ТОУ при заданном качества выходного продукта и т.п.) или техническим показателем (параметра процесса, характеристики выходного продукта).

В случае, если ТОУ управляется АСУТП, весь участвующий в управлении оперативный персонал ТОУ и все средства управления, предусмотренные документацией на АСУТП и взаимодействующие при управлении ТОУ, входят в состав системы, независимо от того, каким путем (нового строительства или модернизации системы управления) создавался АТК.

АСУТП создается путем капитального строительства, т.к. независимо от объёма поставки для её ввода в действие, необходимо проведение строительно-монтажных и наладочных работ на объекте.

АСУТП как компонент общей системы управления промышленным предприятии предназначена для целенаправленного ведения технологических процессов и обеспечения смежных и вышестоящих систем управления оперативной и достоверной технико-экономической информации. АСУТП созданные для объектов основного и (или) вспомогательного производства, представляют собой низовой уровень автоматизированных систем управления на предприятии.

АСУТП могут использоваться для управления отдельными производствами, включающими в свой состав взаимосвязанные ТОУ, в том числе управляемые собственными АСУТП низового уровня.

Для объектов с дискретным характером производства в состав гибких производственных систем могут включаться автоматизированные системы технологической подготовки производства (или их соответствующие подсистемы) и системы автоматизированного проектирования технология (САПР-технология).

Организация взаимодействия АСУТП с вышестоящими уровнями управления определяется наличием на промышленном предприятии автоматизированной системы управления предприятием (АСУП) и автоматизированных систем оперативно-диспетчер­ского управления (АСОДУ).

При их наличии АСУТП в совокупности с ними образуют интегрированную автоматизированную систему управления (ИАСУ). В этом случае АСУТП получает от соответствующих подсистем АСУП или служб управления предприятием непосредственно или через ОСОДУ задания и ограничения (номенклатуру подлежащих выпуску продуктов или изделий, объем производства, технико-экономические показатели, характеризуете качество функционирования АТК, сведения о наличии ресурсов) и обеспечивает подготовку и передачу этим системам необходимой для их работы технико-экономической информации, в частности о результатах работы АТК, основных показателях выпускаемой продукции, оперативной потребности в ресурсах, состоянии АТК (состоянии оборудования, ходе технологического процесса, его технико-экономи­ческих показателях и т.п.),

При наличии на предприятии автоматизированных систем технической и технологической подготовки производства должно быть обеспечено необходимое взаимодействие АСУТП с этими системами. При этом АСУТП получат от них техническую, технологическую и другую информацию, необходимую для обеспечения заданного проведения технологических процессов, и направляют в названные системы фактическую оперативную информацию, необходимую для их функционирования.

При создании на предприятия комплексной системы управления качеством продукции автоматизированные системы управления технологическими процессами выступают в роли ее исполнительных подсистем, обеспечивающих заданное качество продукции ТОУ и подготовку оперативной фактической информации о ходе технологических процессов (статистический контроль и т.д.)

Цели и функции АСУТП.

При создании АСУТП должны быть определены конкретные цели функционирования системы и ее назначение в общей структуре управления предприятия.

Примерами таких целей могут служить:

- экономия топлива, сырья, материалов и других производственных ресурсов;

- обеспечение безопасности функционирования объекта;

- повышение качества выходного продукта или обеспечение заданных значений параметров выходных продуктов (изделия);

- снижение затрат живого труда;

- достижение оптимальной загрузки (использования) оборудо­вания;

- оптимизация режимов работы технологического оборудования (в том числе маршрутов обработки в дискретных производствах) и т.д.

Достижение поставленных целей осуществляется системой посредством выполнения совокупности ее функций.

Функция АСУТП представляет собой совокупность действий системы, обеспечивающих достижение частной цели управления.

При этом под совокупностью действий системы понимают описанную в эксплуатационной документации последовательность операций и процедур, выполняемых элементами системы для ее реализации.

Частная цель функционирования АСУТП - цель функциониро­вания или результат ее декомпозиции, для которой удается оп­ределить полную совокупность действий элементов системы, до­статочную для достижения этой цели.

Функции АСУТП по направленности действий (на­значение функции) делятся на основные и вспомогательные, а по содержанию этих действий - на управляющие и информацион­ные.

К основным (потребительским) функциям АСУТП от­носятся функции, направленные на достижение целей функциони­рования системы, осуществляющие управляющие воздействия на ТОУ и (или) обмен информацией со смежными сис­темами управления. Обычно к ним относят также информационные функции, обеспечивающие оперативный персонал АТК информацией, необходимой ему для управления технологическим процессом про­изводства.

К вспомогательным функциям АСУТП относятся функции, направленные на достижение необходимого качества функционирования (надежности, точности и т.п.) системы, реализующие контроль и управление ее работой.

К управляющим функциям АСУТП относятся функции, содержанием каждой из которых является выработка и реализация управляющих воздействий на соответствующем объекте управления - ТОУ или его часть для основных функций и на АСУТП или ее часть для вспомогательных.

Например:

- основные управляющие функции;

- регулирование (стабилизация) отдельных технологических переменных;

- однотактное логическое управление операциями или аппа­ратами (защиты);

- программное логическое управление технологическими ап­паратами;

- оптимальное управление ТОУ;

- адаптивное управление ТОУ и т.п.;

- вспомогательные управляющие функции;

- реконфигурация вычислительного комплекса (сети) АСУТП;

- аварийное отключение оборудования АСУТП;

- переключение технических средств АСУТП на аварийный ис­точник питания и т.п.

К информационным функциям АСУТП относятся функ­ции, содержанием каждой из которых является получение и преобразования информации о состоянии ТОУ или АСУТП и ее пред­ставление в смежные системы или оперативному персоналу АТК.

Например, основные информационные функции:

- контроль и измерение технологических параметров;

- косвенное измерение параметров процесса (внутренних переменных, технико-экономических показателей);

- подготовка и передача информации в снежные системы уп­равления и т.п.;

- вспомогательные информационные функции:

- контроль состояния оборудования АСУТП;

- определение показателей, характеризующих качество функционирования АСУТП или её частей (в частности оперативного персонала АСУТП) и т.п.

Основные разновидности АСУ ТП Различает два режима реализации функций системы: автоматизированный и автоматический - в зависимости от степени участия людей в выполнении этих функций. Для управлявших функций автоматизированный ре­жим характеризуется участием человека в выработке (принятии) решений и их реализации.

При этом различают следующие вари­анты:

- «ручной» режим, при котором комплекс технических средств представляет оперативному персоналу контрольно-изме­рительную информации о состоянии ТОУ, а выбор и осуществле­ние управляющих воздействий дистанционно или по месту произ­водит человек-оператор;

- режим «советчика», при котором комплекс технических, средств вырабатывает рекомендации по управлению, а решение об их использовании реализуется оперативный персоналом;

- «диалоговый режим», когда оперативный персонал имеет возможность корректировать постановку и условия задачи, решаемой комплексом технических средств системы при выработке рекомендаций по управлению объектом;

- «автоматический режим», при котором функция управления осуществляется автоматически (без участия человека).

При этом различают:

- режим косвенного управления, когда средства вычислительной техники изменяют уставки и (или) параметры настройки локальных систем автоматического управления (регулирования) (супервизорное или каскадное управление);

- режим прямого (непосредственного) цифрового управления (НЦУ), когда управляющее вычислительное устройство непосредственно воздействует на исполнительные механизмы.

Дня информационных функций автоматизированный режим реализации предусматривает участие людей в операциях по получению и обработке информации. В автоматическом режиме все необходимые процедуры обра­ботки информации реализуется без участия человека.

Рассмотрим несколько подробнее схемы управления в АСУТП.

Управление в режиме сбора данных

После этапа идентификации необходимо выбрать схему управления ТП, которая, как правило, строится с учетом применения принципов управления, определяющих режим функционирования АСУТП. Наиболее простой и исторически первой появилась схема управления ТП в режиме сбора данных. При этом АСУ подсоединяется к процессу способом, выбранным инженером-технологом (рисунок 14.5).

Интересующие инженера-технолога переменные преобразуются в цифровую форму, воспринимаемую системой ввода и помещается в памяти ППК (ЭВМ). Величины на этом этапе являются цифровыми представлениями напряжения, генерируемого датчиками. Эти величины по соответствующим формулам преобразуются в технические единицы. Например, для вычисления температуры, замеряемой с помощью термопары, может использоваться формула T = A*U2 + B*U + C, где U – напряжение с выхода термопары; A, B и C – коэффициенты.

Результаты вычислений регистрируются устройствами вывода АСУТП для последующего использования инженером-технологом. Главной целью сбора данных является изучение ТП в различных условиях. В результате инженер-технолог получает возможность построить и (или) уточнить математическую модель ТП, которым нужно управлять. Сбор данных не оказывает прямого воздействия на ТП, в нем нашел осторожный подход к внедрению методов управления, основанных на применении ЭВМ. Однако даже в самых сложных схемах управления ТП система сбора данных для целей анализа и уточнения модели ТП используется как одна из обязательных подсхем управления.

Рисунок 14.5 - Система сбора данных

Управление в режиме советчика оператора

Этот режим предполагает, что ППК в составе АСУТП работает в ритме ТП в разомкнутом контуре (в реальном времени), т.е. выходы АСУТП не связаны с органами, управляющими ТП. Управляющие воздействия фактически осуществляются оператором-технологом, получающим указания от ППК ( рисунок 14.6).

Рисунок 14.6 - АСУТП в режиме советчика оператора

Все необходимые управляющие воздействия вычисляются ППК в соответствии с моделью ТП, результаты вычислений представляются оператору в печатном виде (или в виде сообщений на дисплее). Оператор управляет процессом, изменяя уставки регуляторов. Регуляторы являются средствами поддержания оптимального управления ТП, причем оператор играет роль следящего и управляющего звена. АСУТП играет роль устройства, безошибочно и непрерывно направляющего оператора в его усилиях оптимизировать ТП.

Схема системы советчика совпадает со схемой системы сбора и обработки информации.

Способы организации функционирования информационно-сове­тующей системы следующие:

- вычисление управляющих воздей­ствий производится при отклонениях параметров управляемого процесса от заданных технологических режимов, которые иниции­руются программой-диспетчером, содержащей подпрограмму ана­лиза состояния управляемого процесса;

- вычисление управляющих воздействий инициируется оператором в форме запроса, когда оператор имеет возможность ввести необходимые для расчета дополнительные данные, которые невозможно получить путем измерения параметров управляемого процесса или содержать в системе как справочные.

Эти системы применяют в тех случаях, когда требуется осто­рожный подход к решениям, выработанным формальными мето­дами.

Это связано с неопределенностью в математическом описа­нии управляемого процесса:

- математическая модель недостаточно полно описывает технологический (производственный) процесс, так как учитывает лишь часть управляющих и управляемых параметров;

- математическая модель адекватна управляемому процессу лишь в узком интервале технологических параметров;

- критерии управления носят качественный характер и существенно изменяются в зависимости от большого числа внешних факторов.

Неопределенность описания может быть связана с недостаточ­ной изученностью технологического процесса или реализация адекватной модели потребует применения дорогостоящей ППК.

При большом разнообразии и объеме дополнительных данных общение оператора с ППК строится в форме диалога. Например, в алгоритм вычисления технологического режима включаются альтернативные точки, после которых процесс вычисления может продолжаться по одному из нескольких альтернативных вариан­тов. Если логика алгоритма приводит процесс вычисления к опре­деленной точке, то расчет прерывается и оператору посылается запрос о сообщении дополнительной информации, на основе которой выбирается один из альтернативных путей продолжения расчета. ППК играет в данном случае пассивную роль, связанную с обработкой большого количества информации и ее представле­нием в компактном виде, а функция принятия решений возла­гается на оператора.

Основной недостаток этой схемы управления заключается в постоянном наличии человека в цепи управления. При большом числе входных и выходных переменных такая схема управления не может применяться из-за ограниченных психофизических возможностей человека. Однако управление этого типа имеет и преимущества. Оно удовлетворяет требованиям осторожного подхода к новым методам управления. Режим советчика обеспечивает хорошие возможности для проверки новых моделей ТП; в качестве оператора может выступать инженер-технолог, "тонко чувствующий" процесс. Он наверняка обнаружит неправильную комбинацию уставок, которую может выдать не окончательно отлаженная программа АСУТП. Кроме того, АСУТП может следить за возникновением аварийных ситуаций, так что оператор имеет возможность уделять больше внимания работе с уставками, при этом АСУТП следит за большим числом аварийных ситуаций, чем оператор.

Супервизорное управление.

В этой схеме АСУТП используется в замкнутом контуре, т.е. установки регуляторам задаются непосредственно системой (Рисунок 14.7).

Рисунок 14.7 - Схема супервизорного управления

Задача режима супервизорного управления – поддержание ТП вблизи оптимальной рабочей точки путем оперативного воздействия на него. В этом одно из главных преимуществ данного режима. Работа входной части системы, и вычисление управляющих воздействий мало отличается от работы системы управления в режиме советчика. Однако, после вычисленных значений уставок, последние преобразовываются в величины, которые можно использовать для изменения настроек регуляторов.

Если регуляторы воспринимают напряжения, то величины вырабатываемые ЭВМ, должны быть преобразованы в двоичные коды, которые с помощью цифро-аналогового преобразователя превращаются в напряжения соответствующего уровня и знака. Оптимизация ТП в этом режиме выполняется периодически, напр. один раз в день. Должны быть введены новые коэффициенты в уравнения контуров управления. Это осуществляется оператором через клавиатуру, или считывая результаты новых расчетов, выполненные на ЭВМ более высокого уровня. После этого АСУТП способна работать без вмешательства извне в течение длительного времени.

Примеры АСУТП в супервизорном режиме:

1. Управление автоматизированной транспортно-складской системы. ЭВМ выдает адреса стеллажных ячеек, а система локальной автоматики кранов-штабелеров отрабатывает перемещение их в соответствии с этими адресами.

2. Управление плавильными печами. ЭВМ вырабатывает значения уставок электрического режима, а локальная автоматика управляет переключателями трансформатора по командам ЭВМ.

3. Станки с ЧПУ управление через интерполятор.

Таким образом, супервизорные системы управления функционирующая в режиме супервизорного управления (супервизор — управля­ющая программа или комплекс программ, программа-диспетчер), предназначена для организации многопрограммного режима работы ППК и пред­ставляет собой двухуровневую иерархическую систему, обла­дающую широкими возможностями и повышенной надежностью. Управляющая программа определяет очередность выполнения программ и подпрограмм и руководит загрузкой устройств ППК.

В супервизорной системе управления часть параме­тров управляемого процесса и логико-командного управления управляется локальными автоматическими регуляторами (АР) и ППК, обрабатывая измерительную информацию, рассчитывает и устанавливает оптимальные настройки этих регуляторов. Осталь­ной частью параметров управляет ППК в режиме прямого цифро­вого управления.

Входной информацией являются значения неко­торых управляемых параметров, измеряемых датчиками Ду локальных регуляторов; контролируемые параметры состояния управляемого процесса, измеряемые датчиками Дк. Нижний уровень, непосредственно связанный с технологиче­ским процессом, образует локальные регуляторы отдельных технологических параметров. По данным, поступающим от дат­чиков Ду и Дк через устройство связи с объектом, ППК выраба­тывает значения уставок в виде сигналов, поступающих непосред­ственно на входы систем автоматического регулирования.

Непосредственное цифровое управление.

В НЦУ сигналы, используемые для приведения в действие управляющих органов, поступают непосредственно из АСУТП, и регуляторы вообще исключаются из системы. Концепция НЦУ, при необходимости, позволяет заменить стандартные законы регулирования на т.н. оптимальные с задаваемой структурой и алгоритмом. Например, может реализоваться алгоритм оптимального быстродействия и др.

АСУТП рассчитывает реальные воздействия, и передает соответствующие сигналы непосредственно на управляющие органы. Схема НЦУ показана на рисунке 14.8.

Рисунок 14.8 - Схема непосредственного цифрового управления (НЦУ)

Уставки вводятся в АСУ оператором или ЭВМ, выполняющей расчеты по оптимизации процесса. При наличии системы НЦУ оператор должен иметь возможность изменять уставки, контролировать некоторые избранные переменные, варьировать диапазоны допустимого изменения измеряемых переменных, изменять параметры настройки и вообще должен иметь доступ к управляющей программе.

Одно из главных преимуществ режима НЦУ заключается в возможности изменения алгоритмов управления для контуров простым внесением изменений в хранимую программу. Наиболее очевидный недостаток НЦУ проявляется при отказе ЭВМ.

Таким образом, системы прямого цифрового управления (ПЦУ) или непосредственного цифрового управления (НЦУ, DDC) . ППК непосредственно вырабатывает оптимальные управляющие воздействия и с помощью соответствующих преобразователей передает команды управле­ния на исполнительные механизмы.

Режим непосред­ственного цифрового управления позволяет:

- исключить локальные регуляторы с задаваемой уставкой;

- применять более эффективные принципы регулирования и управления и выбирать их оптималь­ный вариант;

- реализовать оптимизирующие функции и адаптацию к изменению внешней среды и переменным параметрам объекта управления;

- снизить расходы на техническое обслуживание и унифицировать средства контроля и управления.

Этот принцип управления применяют в стан­ках с ЧПУ. Оператор должен иметь воз­можность изменять уставки, контролировать выходные пара­метры процесса, варьировать диапазоны допустимого измене­ния переменных, изменять па­раметры настройки, иметь дос­туп к управляющей программе в подобных системах упрощается реализация режимов пуска и останова процессов, переключение с ручного управления на автоматическое, операции переключения исполнительных механизмов. Основной недостаток подобных систем заключается в том что надежность всего комплекса определяется надежностью устройств связи с объектом и ППК, и при выходе из строя объект теряет уп­равление, что приводит к аварии. Выходом из этого положения является организация резервирования ЭВМ, замена одной ЭВМ системой машин и др.

Состав АСУ ТП.

Выполнение функций АСУТП достигается путем взаимодействия ее следующих составных частей:

- технического обеспечения (ТО),

- программного обеспечения (ПО),

- информационного обеспечения (ИО),

- организационного обеспечения (ОО),

- оперативного персонала (ОП).

Эти пять компонентов и образуют состав АСУТП. Иногда рассматривают и другие виды обеспечения, например лингвистическое, математическое, алгоритмическое, но они рассматриваются как компоненты ПО и т.п.

Техническое обеспечение АСУТП представляет со­бой полную совокупность технических средств (в том числе средств вычислительной техники), достаточную для функциониро­вания АСУТП и выполнения системой всех ее функций. Примечание. Регулирующие органы в состав ТО АСУТП не входят.

Комплекс выбранных технических средств должен обеспечить такую систему измере­ний в условиях функционирования АСУ ТП, которые, в свою очередь, обеспечивают необходимую точность, быстродействие, чувствительность и надежность в соответствии с заданными метрологическими, эксплуатаци­онными и экономическими характеристиками. Технические средства можно группировать по эксплуатационным характеристикам, функциям управления, информационным характеристикам, конструктивному сходству. Наи­более удобной считается классификация технических средств по информационным характеристикам.

В связи со сказанным комплекс технических средств должен содержать:

1) средства получения информации о состоянии объекта управления и средства ввода в систему (вход­ные преобразователи, датчики), обеспечивающие преобразование входной информации в стандартные сигналы и коды;

2) средства промежуточного преобразования информации, обеспечивающие взаимосвязь между устрой­ствами с разными сигналами;

3) выходные преобразователи, средства вывода информации и управления, преобразующие машинную информацию в различные формы, необходимые для управления технологическим процессом;

4) средства формирования и передачи информации, обеспечивающие перемещение информации в про­странстве;

5) средства фиксации информации, обеспечивающие перемещение информации во времени;

6) средства переработки информации;

7) средства локального регулирования и управления;

8) средства вычислительной техники;

9) средства представления информации оперативному персоналу;

10) исполнительные устройства;

11) средства передачи информации в смежные АСУ и АСУ других уровней;

12) приборы, устройства для наладки и проверки работоспособности системы;

13) документационная техника, включающая средства создания и уничтожения документов;

14) конторско-архивная техника;

15) вспомогательное оборудование;

16) материалы и инструмент.

Вспомогательные технические средства обеспечивают выполнение второстепенных процессов управле­ния: копирование, печать, обработку корреспонденции, создание условий нормальной работы управленческого персонала, поддержание технических средств в исправном состоянии и их функционирование. Создание типо­вых АСУ ТП в настоящее время невозможно из-за значительного расхождения организационных систем управ­ления предприятиями.

Технические средства АСУ ТП должны соответствовать требованиям ГОСТов, которые направлены на обеспечение различной совместимости объекта автоматизации.

Эти требования подразделяются на группы:

1. Информационные. Обеспечивают информационную совместимость технических средств между собой и с обслуживающим персоналом.

2. Организационные. Структура управления технологическим процессом, технология управления, техни­ческие средства должны соответствовать друг другу до и после внедрения АСУ ТП, для чего необходимо обес­печить:

- соответствие структур КТС - структуре управления объектом;

- автоматизированное выполнение основных функций, выделение информации, ее передачу, обработку, вывод данных;

- возможность модификации КТС;

- возможность создания организационных систем контроля работы КТС;

- возможность создания систем контроля персонала.

3. Математические. Сглаживание несоответствий работы технических средств с информацией может быть выполнено с помощью программ перекодирования, перевода, пересоставления макетов.

Это обуславливает следующие требования к математическому обеспечению:

- быстрое решение основных задач АСУ ТП;

- упрощение общения персонала с КТС;

- возможность информационной стыковки различных технических средств.

4. Технические требования:

- необходимая производительность для своевременного решения задач АСУ ТП;

- приспособленность к условиям внешней среды предприятия;

- надежность и ремонтопригодность;

- использование унифицированных, серийно выпускаемых блоков;

- простота эксплуатации и обслуживания;

- техническая совместимость средств, основанная на общей элементной и конструкторской базе;

- требования эргономики, технической эстетики.

5. Экономические требования к техническим средствам:

- минимальные капиталовложения на создание КТС;

- минимальные производственные площади для размещения КТС;

- минимальные затраты на вспомогательное оборудование.

6. Надежность АСУ ТП. При рассмотрении технического обеспечения рассматривается и вопрос на-дежности АСУ ТП.

При этом необходимо провести исследования АСУ ТП, выделив следующие моменты:

1) сложность (большое число различных технических средств и персонала);

2) многофункциональность;

3) многонаправленность использования элементов в системе;

4) множественность видов отказов (причины возникновения, последствия);

5) взаимосвязь надежности и экономической эффективности;

6) зависимость надежности от технической эксплуатации;

7) зависимость надежности от КТС и структуры алгоритмов;

8) влияние персонала на надежность.

Уровень эксплуатационной надежности АСУ ТП определяется такими факторами как:

- составом и структурой используемых технических средств;

- режимами, параметрами обслуживания и восстановления;

- условиями эксплуатации системы и ее отдельных компонент;

- содержанием, организацией, структурой реализуемых алгоритмов управления;

- содержанием задач и организацией деятельности операторов.

Программное обеспечение АСУТП представляет собой совокупность программ и эксплуатационной программной документации, необходимую для реализации функций автоматизированной системой управления технологическим процессом заданного режима функционирования комплекса технических средств АСУТП.

Программное обеспечение АСУТП подразделяется на общее прог­раммное обеспечение (ОПО) и специальное программное обеспечение (СПО).

К общему программному обеспечению АСУТП относят ту часть программного обеспечения, которая поставляется в комплек­те со средствами вычислительной техники или приобретается гото­вой в специализированных фондах алгоритмов и программ. В состав ОПО АСУТП входят программы, используемые для разработки программ, компоновки программного обеспечения, организации функционирования вычислительного комплекса и другие служебные и стандартные прог­раммы (например, организующие программы, транслирующие программы, библиотеки стандартных программ и др.). ОПО АСУТП изготавливается и поставляется в виде продукции производственно-технического назначения заводами-изготовителями средств ВТ (см. п.1.4.7).

К специальному программному обеспечению АСУТП относят ту часть программного обеспечения, которая разрабатыва­ется при создании конкретной системы (систем) и включает прог­раммы реализации основных (управляющих и информационных) и вспомогательных (обеспечение заданного функционирования КТС систе­мы, проверка правильности ввода информации, контроль за работой КТС системы и т.п.) функций АСУТП. Специальное программное обеспечение АСУТП разрабатывает­ся на базе и с использованием программного обеспечения. Отдельные программы или СПО АСУТП в целом могут изготавливаться и поставляться в виде программных средств как продук­ция производственно-технического назначения.

В состав программного обеспечения входят общее программное обеспече­ние, поставляемое со средствами вычислительной техники, в том числе, организующие программы, программы-диспетчеры, транслирующие программы, операционные системы, библиотеки стандартных программ, а также специальное программное обеспечение, которое реализует функции конкретной системы, обеспечивает функцио­нирование КТС, в том числе аппаратным путем.

Математическое, алгоритмическое обеспечение. Как известно, модель - это образ объекта исследо­вания, отображающая существенные свойства, характеристики, параметры, взаимосвязи объекта. Одним из ме­тодов исследования процессов или явлений в АСУ ТП является метод математического моделирования, т.е. путем построения их математических моделей и анализа этих моделей. Разновидностью математического моде­лирования является имитационное моделирование, при котором используется прямая подстановка чисел, ими­тирующих внешние воздействия, параметры и переменные процессов с помощью УВК. Для проведения имита­ционных исследований необходимо разработать алгоритм.

Алгоритмы, используемые в АСУ ТП, характеризу­ются следующими особенностями:

- временная связь алгоритма с управляемым процессом;

- хранение рабочих программ в оперативной памяти УВК для доступа к ним в любой момент времени;

- превышение удельного веса логических операций;

- разделение алгоритмов на функциональные части;

- реализация на УВК алгоритмов в режиме разделения времени.

Учет временного фактора в алгоритмах управления сводится к необходимости фиксации времени приема информации в систему, времени выдачи сообщений оператором для формирования управляющих воздействий, прогнозирования состояния объекта управления. Необходимо обеспечить своевременную обработку сигналов УВК, связанной с управляемым объектом. Это достигается составлением наиболее эффективных по быстро­действию алгоритмов, реализуемых на быстродействующих УВК.

Из второй особенности алгоритмов АСУ ТП вытекают жесткие требования к объему памяти, необходимой для реализации алгоритма, к связанности алгоритма.

Третья особенность алгоритмов обусловлена тем, что технологические процессы управляются на основе ре­шений, принимаемых по результатам сопоставления различных событий, сравнения значений параметров объекта, проверки выполнения различных условий и ограничений.

Использование четвертой особенности алгоритмов АСУ ТП дает возможность разработчику сформулиро­вать несколько задач системы, а затем объединить разработанные алгоритмы этих задач в единую систему. Степень взаимосвязи задач АСУ ТП может быть различной и зависит от конкретного объекта управления.

Для учета пятой особенности алгоритмов управления необходимо разработать операционные системы ре­ального времени и планировать очередность загрузки модулей, реализующих алгоритмы задач АСУ ТП, их вы­полнение в зависимости от приоритетов.

На этапе разработки АСУ ТП создаются измерительные информационные системы, которые обеспечивают полный и своевременный контроль режима работы агрегатов, позволяющих анализировать ход технологиче­ского процесса и ускорить решение задач оптимального управления.

Функции систем централизованного кон­троля сводятся к решению следующих задач:

- определение текущих и прогнозируемых значений величин;

- определение показателей, зависящих от ряда измеряемых величин;

- обнаружение событий, являющихся нарушениями и неисправностями на производстве.

Общая модель задачи при оценке текущих значений измеряемых величин и вычисляемым по ним ТЭП в системе централизованного контроля может быть представлена следующим образом: задается совокупность величин и показателей, которые необходимо определять в объекте контроля, указывается требуемая точность их оценки, имеется совокупность датчиков, которые установлены на автоматизируемом объекте. Тогда общая задача оценки значения отдельной величины формулируется следующим образом: для каждой отдельной вели­чины требуется найти группу датчиков, частоту их опроса и алгоритм переработки получаемых от них сигна­лов, в результате которого значение этой величины определяется с заданной точностью.

Для решения задач в условиях АСУ ТП используются такие математические методы, как линейное про­граммирование, динамическое программирование, методы оптимизации, выпуклое программирование, комби­наторное программирование, нелинейное программирование. Методами построения математического описания объекта являются метод Монте-Карло, математическая статистика, теория планирования эксперимента, теория массового обслуживания, теория графов, системы алгебраических и дифференциальных уравнений.

Информационное обеспечение АСУТП включает: перечень и характеристики сигналов, характеризующих состояние АТК:

- описание принципов (правил) классификации и кодирования информации и перечень классификационных группировок,

- описания массивов информации, формы документов к видео­кадрам, используемых в системе,

- нормативно-справочную (условно-постоянную) информацию, используемую при работе системы.

В состав организационного обеспечения АСУТП вхо­дят описание АСУТП (функциональной, технической и организаци­онной структуры системы) и инструкции для оперативного персонала, необходимые и достаточные для его функционирования в составе АТК.

Организационное обеспечение включает описание функциональной, технической, организационной структур системы, инструкции и регламенты для оперативного персонала по работе АСУ ТП. Оно содержит совокупность правил, предписаний, обеспечивающих требуемое взаимодействие оперативного персонала меж­ду собой и комплексом средств.

Таким образом, организационная структура управления - это связи между людьми, занятыми экс­плуатацией объекта. Персонал, занятый оперативным управлением, поддерживает технологический процесс в заданных нормах, обеспечивает выполнение производственного плана, контролирует работу технологического оборудования, следит за условиями безопасного ведения процесса.

Эксплуатационный персонал АСУ ТП обеспечивает правильность функционирования КТС АСУ ТП, ведет учет и отчетность. АСУ ТП получает от вышестоящего уровня управления производственные задания, крите­рии реализации этих заданий, передает на вышестоящие уровни управления сведения о выполнении заданий, количественных и качественных показателях продукции и функционировании автоматизированного техноло­гического комплекса.

Для анализа организационной структуры и определения оптимального построения внутренних взаимосвя­зей используют методы групповой динамики. При этом обычно применяют методику и приемы социальной психологии.

Проведенные исследования дали возможность сформулировать требования, необходимые для ор­ганизации группы оперативного технологического персонала:

- вся производственная информация должна передаваться только через руководителя;

- у одного подчиненного должно быть не больше одного непосредственного руководителя;

- в производственном цикле информационно взаимодействуют друг с другом только подчиненные одно­го руководителя.

Подразделения технического обслуживания выполняют работы на всех стадиях создания АСУ ТП (проек­тирование, внедрение, эксплуатация), их основными функциями являются:

- обеспечение эксплуатации систем в соответствии с правилами и требованиями технической докумен­тации;

- обеспечение текущего и планового ремонта технических средств АСУ ТП;

- проведение совместно с разработчиками испытаний АСУ ТП;

- проведение исследований по определению экономической эффективности системы;

- разработка и реализация мероприятий по дальнейшему развитию системы;

- повышение квалификации работников службы АСУ ТП, изучение и обобщение опыта эксплуатации. Для выполнения функций технологу-оператору должны быть представлены технические и программные средства, обеспечивающие в зависимости от особенностей технологического процесса требуемые наборы из следующих информационных сообщений:

- индикация измеренных значений параметров по вызову;

- индикация и изменение заданных границ контроля параметров процесса;

- звуковая сигнализация и индикация отклонений параметров за регламентные границы;

- звуковая сигнализация и индикация отклонений скорости изменения параметров от заданных значений;

- отображение состояния технологического процесса и оборудования на схеме объекта управления;

- регистрация тенденций изменения параметров;

- оперативная регистрация нарушений технологического процесса и действий оператора.

Информационное обеспечение (ИО) включает систему кодирования технологической и технико-экономической информации, справочную и оперативную информацию, содержит описание всех сигналов и кодов, используемых для связи технических средств. Применяемые коды должны включать минимальное число знаков, иметь логическую структуру и отвечать другим требованиям кодирования. Формы выходных докумен­тов и представлений информации не должны вызывать трудностей при их использовании.

При разработке и внедрении системы ИО АСУ ТП необходимо учитывать принципы организации управ­ления технологическим процессом, которым соответствуют следующие этапы.

1) Определение подсистем АСУ ТП и типов управленческих решений, по которым необходимо обеспече­ние научно-технической информацией. Результаты этого этапа используются для определения оптимальной структуры массивов информации, для выявления характеристик ожидаемого потока запросов.

2) Определение основных групп потребителей информации. Потребители информации классифицируются в зависимости от их участия в подготовке и принятии управленческих решений, связанных с организацией тех­нологического процесса. Накопление информации осуществляется с учетом видов задач, решаемых при управ­лении процессами. Потребитель может получить информацию по сопряженным технологическим участкам, также создаются условия для перераспределения информации при изменении потребностей.

3) Изучение информационных потребностей.

4) Изучение потоков научно-технической информации, необходимой при управлении процессами, бази­руется на результатах анализа управленческих задач. Наряду с потоками документальной информации анали­зируются факты, отражающие опыт данного и аналогичных предприятий.

5) Разработка информационно-поисковых систем для управления технологическим процессом.

Для автоматизированных систем характерны процессы переработки информации - преобразование, пере­дача, хранение, восприятие. При управлении технологическим процессом происходит передача информации и переработка управляющей системой входной информации в выходную информацию. При этом необходимы контроль и регулирование, заключающиеся в сравнении информации о результатах предшествующего этапа деятельности с информацией, соответствующей условиям достижения цели, в оценке рассогласования между ними и выработке корректирующего выходного сигнала. Рассогласование вызывается внутренними и внешни­ми возмущающими воздействиями случайного характера. Процесс передачи информации предполагает наличие источника информации и приемника.

Для обеспечения участия человека в управлении технологическим процессом необходимо документирова­ние информации. Для последующих анализов требуется накопление статистических исходных данных посред­ством регистрации состояний и значений параметров процесса во времени. На основе этого проверяется соблю­дение технологического процесса, качество продукции, контролируются действия персонала в аварийных си­туациях, осуществляется поиск направлений совершенствования процесса.

При разработке информационного обеспечения АСУ ТП, связанного с документированием и регистраци­ей, необходимо:

- определить вид регистрируемых параметров, место и форму регистрации;

- выбрать временной фактор регистрации;

- минимизировать количество регистрируемых параметров из соображений необходимости и достаточ­ности для оперативных действий и анализа;

- унифицировать форматы документов, их структуру;

- ввести специальные реквизиты;

- решить вопросы классификации документов и маршрутов их движения;

- определить объемы информации в документах, установить место и сроки хранения документов.

Потоки информации в каналах связи АСУ ТП система должна передавать с необходимым качеством ин­формации от места ее образования к месту ее приема и использования.

Для этого должны удовлетворяться сле­дующие требования:

- своевременность доставки информации;

- верность передачи - отсутствие искажений, потерь;

- надежность функционирования;

- единство времени в системе;

- возможность технической реализации;

- обеспечение экономической приемлемости информационных требований. Кроме того, система должна предусматривать:

- регулирование информационных потоков;

- возможность осуществления внешних связей;

- возможность расширения АСУ ТП;

- удобство участия человека в анализе и управлении процессом.

К основным характеристикам потока информации относятся:

- объект управления (источник информации);

- цель информации;

- формат информации;

- объемно-временные характеристики потока;

- периодичность возникновения информации;

- объект, использующий информацию.

При необходимости характеристики потока детализируются указанием:

- вида информации;

- наименования контролируемого параметра;

- диапазона изменения параметра во времени;

- числа одноименных параметров на объекте;

- условий отображения информации;

- скорости генерации информации.

К основным информационным характеристикам канала связи относятся:

- местоположение начала и конца канала связи;

- форма передаваемой информации;

- структура канала передачи - датчик, кодер, модулятор, линия связи, демодулятор, декодер, устройство отображения;

- вид канала связи - телефонный, механический;

- скорость передачи и объем информации;

- способы преобразования информации;

- пропускная способность канала;

- объем сигнала и емкость канала связи;

- помехоустойчивость;

- информационная и аппаратурная избыточность канала;

- надежность связи и передачи по каналу;

- уровень затухания сигнала в канале;

- информационное согласование звеньев канала;

- мобильность канала передачи.

В АСУ ТП может быть внесен временной признак информации, который предполагает единую систему времени с централизованной шкалой отсчета. Для информационных связей АСУ ТП характерной чертой явля­ется действие в реальном масштабе времени.

Применение единой системы отсчета времени обеспечивает вы­полнение следующих задач:

- документирование времени приема, передачи информации;

- протоколирование происходящих в АСУ ТП событий;

- анализ производственных ситуаций по временному признаку (очередность поступления, длительность);

- учет времени прохождения информации по каналам связи и времени обработки информации;

- управление очередностью приема, передачи, обработки информации;

- задание последовательности управляющих воздействий в пределах единой шкалы времени;

- отображение единого времени в пределах зоны действия АСУ ТП.

При создании АСУ ТП основное внимание уделяется сигналам, связанным с взаимодействием отдельных элементов. Изучению подлежат сигналы взаимодействия человека с техническими средствами и одних техни­ческих средств с другими техническими средствами. В связи с этим рассматриваются следующие группы сиг­налов и кодов:

Первая группа - представляет собой стилизованные языки, которые обеспечивают экономный ввод данных в технические средства и вывод их оператору. По характеру информации выделяют технические и экономиче­ские данные.

Вторая группа - решает задачи передачи данных и стыковки технических средств. Здесь основной про­блемой является верность передачи сообщения, для чего используют помехоустойчивые коды. Информацион­ная совместимость технических средств обеспечивается установкой дополнительной согласующей аппаратуры, использованием вспомогательных программ перекодировки данных.

Третья группа - представляет собой машинные языки. Обычно используют двоичные коды с элементами защиты данных по цифровому модулю, с дополнением кода проверочным разрядом.

Общие технические требования к АСУ ТП по информационному обеспечению:

1) максимальное упрощение кодирования информации за счет кодовых обозначений и кодов повторения;

2) обеспечение простоты декодирования выходных документов и форм;

3) информационная совместимость АСУ ТП со смежными системами по содержанию, кодированию, форме представления информации;

4) возможность внесения изменений в ранее переданную информацию;

5) обеспечение надежности выполнения системой своих функций за счет помехозащищенности информации.

Персонал АСУ ТП взаимодействует с КТС, воспринимая и вводя технологическую и экономическую ин­формацию. Кроме этого оператор взаимодействует с другими операторами и вышестоящим персоналом. Для облегчения этих связей принимаются меры по формализации потоков информации, их сжатию и упорядоче­нию. ЭВМ передает оператору информацию в виде световых сигналов, изображений, печатных документов, звуковых сигналов.

При взаимодействии оператора с УВК необходимо обеспечить:

- наглядное отображение функционально-технологической схемы объекта управления, информацию о его состоянии в объеме функций, возложенных на оператора;

- отображение связи и характера взаимодействия объекта управления с внешней средой;

- сигнализацию о нарушениях в работе объекта;

- быстрое выявление и ликвидацию неисправностей.

Отдельные группы элементов, наиболее существенные для контроля и управления объектом, обычно вы­деляют размерами, формой, цветом. Технические средства, используемые для автоматизации управления, по­зволяют вводить информацию только в определенной заранее обусловленной форме. Это приводит к необхо­димости кодирования информации. Обмен данными между функциональными блоками системы управления должен осуществляться законченными смысловыми сообщениями. Сообщения передаются двумя раздельными потоками данных: информационным и управляющим.

Сигналы информационного потока подразделяются на группы:

- измеряемого параметра;

- диапазона измерения;

- состояния функциональных блоков системы;

- адреса (принадлежность измеряемого параметра определенному блоку);

- времени;

- служебный.

Для защиты от ошибок при обмене информацией через каналы связи на входе и выходе аппаратуры следу­ет использовать избыточные коды с их проверкой на четность, цикличность, итеративность, повторяемость. Вопросы защиты информации связаны с обеспечением надежности работы системы управления, формами представления информации. Информацию необходимо защищать от искажения и от использования ее не по назначению. Методы защиты информации зависят от производимых операций, от используемого оборудования

Оперативный персонал АСУТП состоит из технологов-операторов АТК, осуществляющих контроль за работой, и управле­ние ТОУ с использованием информации и рекомендаций по рацио­нальному управлению, выработанных комплексами средств автоматизации АСУТП, и эксплуатационного персонала АСУТП, обеспечива­ющего правильность функционирования комплекса технических и программных средств АСУТП. Ремонтный персонал в состав оперативного персонала АСУТП не входит.

В ходе процесса проектирования АСУТП разрабатывают­ся математическое и лингвистическое обеспечения, которые в явном виде не входят в состав функционирующей системы. Математическое обеспечение АСУТП представляет собой совокупность методов, моделей и алгоритмов, используемых в системе. Математическое обеспечение АСУТП реализуется в виде программ специального программного обеспечения.

Лингвистическое обеспечение АСУТП представляет собой совокупность языковых средств для общения оперативного персонала АСУТП со средствами ВТ системы. Описание языковых средств включается в состав эксплуатационной документации орга­низационного и программного обеспечения системы. Метрологическое обеспечение АСУТП - это совокупность работ, проектных решений и технических и программных средств, направленная на обеспечение заданных точностных характеристик функций системы, реализованных на основе измерительной инфор­мация.

В состав оперативного персонала входят технологи-операторы автоматизиро­ванного технологического комплекса, осуществляющие управление технологическим объектом, и эксплуатаци­онный персонал АСУ ТП, обеспечивающий функционирование системы. Оперативный персонал может рабо­тать в контуре управления и вне него. В первом случае реализуются функции управления по рекомендациям, выдаваемым КТС. Во втором случае оперативный персонал задает системе режим работы, контролирует работу системы и при необходимости принимает на себя управление технологическим объектом. Службы ремонта в состав АСУТП не входят.

Диспетчерская служба в АСУ ТП находится на стыке управления технологическим процессом и управления производством. Операторские и диспетчерские пункты АСУ обеспечивают экономичное объедине­ние способностей оперативного персонала и возможностей технических средств.


Сейчас читают про: